Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase

An Erratum to this article was published on 01 April 2002

Abstract

Transforming growth factor-β (TGF-β) and TGF-β-related factors induce apoptosis in a variety of tissues; however, the mechanism underlying this induction is largely unknown. Here, we demonstrate that TGF-β induces the expression of the death-associated protein kinase (DAP-kinase) as an immediate early response in cells that undergo apoptosis in response to TGF-β. DAP-kinase is a positive mediator of apoptosis induced by certain cytokines and oncogenes. We show that the DAP-kinase promoter is activated by TGF-β through the action of Smad2, Smad3 and Smad4. Overexpression of DAP-kinase triggers apoptosis in the absence of TGF-β, whereas inhibition of DAP-kinase activity protects cells from TGF-β-induced apoptosis, blocks TGF-β-induced release of cytochrome c from mitochondria and prevents TGF-β-induced dissipation of the mitochondrial membrane potential. Our findings indicate that DAP-kinase mediates TGF-β-dependent apoptosis by linking Smads to mitochondrial-based pro-apoptotic events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upregulation of DAP-kinase during TGF-β-induced apoptosis.
Figure 2: TGF-β regulates DAP-kinase promoter activity but not mRNA stability.
Figure 3: TGF-β-induced DAP-kinase transcription requires Smad2, Smad3 and Smad4.
Figure 4: Smad-binding elements are required for DAP-kinase induction by TGF-β.
Figure 5: DAP-kinase expression induces apoptosis and sensitizes cells to TGF-β-dependent apoptosis.
Figure 6: Expression of DAP-kinase dominant negative mutants protect Hep3B cells from TGF-β-induced apoptosis.
Figure 7: Antisense inhibition of DAP-kinase expression specifically prevents TGF-β-induced apoptosis.
Figure 8: Dominant negative DAP-kinase protects cells from mitochondrial damage induced by TGF-β.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Derynck, R. & Feng, X.-H. TGF-β receptor signaling. Biochim. Biophys. Acta. 1333, F105–F150 (1997).

    CAS  PubMed  Google Scholar 

  2. Massague, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  CAS  Google Scholar 

  3. Chen, R. H. & Chang, T. Y. Involvement of caspase family proteases in transforming growth factor-β-induced apoptosis. Cell Growth Differ. 8, 821–827 (1997).

    CAS  PubMed  Google Scholar 

  4. Oberhammer, F. A. et al. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor-β1. Proc. Natl Acad. Sci. USA 89, 5408–5412 (1992).

    Article  CAS  Google Scholar 

  5. Takiya, S. et al. Role of transforming growth factor β1 on hepatic regeneration and apoptosis in liver diseases. J. Clin. Pathol. 48, 1093–1097 (1995).

    Article  CAS  Google Scholar 

  6. Chaouchi, N. et al. Characterization of transforming growth factor-β1 induced apoptosis in normal human B cells and lymphoma B cell lines. Oncogene 11, 1615–1622 (1995).

    CAS  PubMed  Google Scholar 

  7. Brodin, G. et al. Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. Cancer Res. 59, 2731–2738 (1999).

    CAS  PubMed  Google Scholar 

  8. Yokouchi, Y. et al. BMP-2/-4 mediate programmed cell death in chicken limb bud. Development 122, 3725–3734 (1996).

    CAS  PubMed  Google Scholar 

  9. Macias, D. et al. Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124, 1109–1117 (1997).

    CAS  PubMed  Google Scholar 

  10. Zou, H. & Niswander, L. Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272, 738–741 (1996).

    Article  CAS  Google Scholar 

  11. Merino, R. et al. Bone morphogenetic proteins regulate interdigital cell death in the avian embryo. Ann. NY Acad. Sci. 887, 120–132 (1999).

    Article  CAS  Google Scholar 

  12. Selvakumaran, M., Liebermann, D. & Hoffman-Liebermann, B. Myeloblastic leukemia cells conditionally blocked by myc-estrogen receptor chimeric transgenes for terminal differentiation coupled to growth arrest and apoptosis. Blood 81, 2257–2262 (1993).

    CAS  PubMed  Google Scholar 

  13. Foitzik, K. et al. Control of murine hair follicle regression (catagen) by TGF-β1 in vivo. FASEB J. 14, 752–760 (2000).

    Article  CAS  Google Scholar 

  14. Wrana, J. L. et al. Mechanism of activation of the TGF-β receptor. Nature 370, 341–347 (1994).

    Article  CAS  Google Scholar 

  15. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massague, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383, 832–836 (1996).

    Article  CAS  Google Scholar 

  16. Macias-Silva, M. et al. MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215–1224 (1996).

    Article  CAS  Google Scholar 

  17. Zhang, Y., Feng, X., Wu, R. & Derynck, R. Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature 383, 168–172 (1996).

    Article  CAS  Google Scholar 

  18. Nakao, A. et al. TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16, 5353–5362 (1997).

    Article  CAS  Google Scholar 

  19. Attisano, L. & Wrana, J. L. Smads as transcriptional co-modulators. Curr. Opin. Cell Biol. 12, 235–243 (2000).

    Article  CAS  Google Scholar 

  20. Massague, J. & Wotton, D. Transcriptional control by the TGF-β/Smad signaling system. EMBO J. 19, 1745–1754 (2000).

    Article  CAS  Google Scholar 

  21. ten Dijke, P., Miyazono, K. & Heldin, C. H. Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends Biochem. Sci. 25, 64–70 (2000).

    Article  CAS  Google Scholar 

  22. Zhang, Y. & Derynck, R. Regulation of Smad signalling by protein associations and signalling crosstalk. Trends Cell Biol. 9, 274–279 (1999).

    Article  CAS  Google Scholar 

  23. Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGF-β receptor and functions as an antagonist of TGFβ signaling. Cell 89, 1165–1173 (1997).

    Article  CAS  Google Scholar 

  24. Imamura, T. et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature 389, 622–626 (1997).

    Article  CAS  Google Scholar 

  25. Sanchez, A., Alvarez, A. M., Benito, M. & Fabregat, I. Apoptosis induced by transforming growth factor-β in fetal hepatocyte primary cultures: involvement of reactive oxygen intermediates. J. Biol. Chem. 271, 7416–7422 (1996).

    Article  CAS  Google Scholar 

  26. Selvakumaran, M. et al. The novel primary response gene MyD118 and the proto-oncogene myb, myc and Bcl2 modulate transforming growth factor-β1-induced apoptosis. Mol. Cell Biol. 14, 2352–2360 (1994).

    Article  CAS  Google Scholar 

  27. Saltzman, A. et al. Transforming growth factor-β-mediated apoptosis in the Ramos B-lymphoma cell line is accompanied by caspase activation and Bcl-XL downregulation. Exp. Cell Res. 242, 244–254 (1998).

    Article  CAS  Google Scholar 

  28. Larisch-Bloch, S. et al. Selective loss of the transforming growth factor-β apoptotic signaling pathway in mutant NRP-154 rat prostatic epithelial cells. Cell Growth Differ. 11, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  29. Larisch, S. et al. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nature Cell Biol. 2, 915–921 (2000).

    Article  CAS  Google Scholar 

  30. Patil, S. et al. Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from TGFβ-induced growth inhibition and apoptosis. J. Biol. Chem. 275, 38363–38370 (2000).

    Article  CAS  Google Scholar 

  31. Yamamura, Y., Hua, X., Bergelson, S. & Lodish, H. F. Critical role of smads and AP-1 complex in TGF-β-dependent apoptosis. J. Biol. Chem. 275, 36295–36302 (2000).

    Article  CAS  Google Scholar 

  32. Massague, J. How cells read TGF-β signals. Nature Rev. Mol. Cell Biol. 1, 169–178 (2000).

    Article  CAS  Google Scholar 

  33. Deiss, L. P. et al. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the γ-interferon-induced cell death. Genes Dev. 9, 15–30 (1995).

    Article  CAS  Google Scholar 

  34. Cohen, O., Feinstein, E. & Kimchi, A. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J. 16, 998–1008 (1997).

    Article  CAS  Google Scholar 

  35. Cohen, O. et al. DAP-kinase participates in TNF-α- and Fas-induced apoptosis and its function requires the death domain. J. Cell Biol. 146, 141–148 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Raveh, T. et al. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nature Cell Biol. 3, 1–7 (2001).

    Article  CAS  Google Scholar 

  37. Buzby, J. S. et al. Increased granulocyte-macrophage colony-stimulating factor mRNA instability in cord versus adult mononuclear cells is translation-dependent and associated with increased levels of A+U-rich element binding factor. Blood 88, 2889–2897 (1996).

    CAS  PubMed  Google Scholar 

  38. Kissil, J. L. et al. DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell line: Possible implication for roles as tumor suppressor genes. Oncogene 15, 403–407 (1997).

    Article  CAS  Google Scholar 

  39. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  40. Park, U. S. et al. Hepatitis B virus-X protein upregulates the expression of p21waf1/cip1 and prolongs G1 to S transition via a p53-independent pathway in human hepatoma cells. Oncogene 19, 3384–3394 (2000).

    Article  CAS  Google Scholar 

  41. Shi, Y. et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 94, 585–594 (1998).

    Article  CAS  Google Scholar 

  42. Hanai, J. et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Cα promoter. J. Biol. Chem. 274, 31577–31582 (1999).

    Article  CAS  Google Scholar 

  43. Pardali, E. et al. Smad and AML proteins synergistically confer transforming growth factor-β1 responsiveness to human germ-line IgA genes. J. Biol. Chem. 275, 3552–3560 (2000).

    Article  CAS  Google Scholar 

  44. Zhang, Y. & Derynck, R. Transcriptional regulation of the transforming growth factor-β-inducible mouse germ line Ig-α constant region gene by functional cooperation of Smad, CREB, and AML family members. J. Biol. Chem. 275, 16979–16985 (2000).

    Article  CAS  Google Scholar 

  45. Aravind, L., Dixit, V. M. & Koonin, E. V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291, 1279–1284 (2001).

    Article  CAS  Google Scholar 

  46. Chen, J. J. et al. Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51, 313–324 (1998).

    Article  CAS  Google Scholar 

  47. Feng, X.-H., Filvaroff, E. H. & Derynck, R. Transforming growth factor-β (TGF-β)-induced down-regulation of cyclin A expression requires a functional TGF-β receptor complex. J. Biol. Chem. 270, 24237–24245 (1995).

    Article  CAS  Google Scholar 

  48. He, T. C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  Google Scholar 

  49. Chen, R. H., Su, Y. H., Chuang, R. L. & Chang, T. Y. Suppression of transforming growth factor-β-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene 17, 1959–1968 (1998).

    Article  CAS  Google Scholar 

  50. Feng, X. H. & Derynck, R. Ligand-independent activation of transforming growth factor (TGF) β signaling by heteromeric cytoplasmic domains of TGF-beta receptors. J. Biol. Chem. 271, 13123–13129 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Derynck, X.-H. Feng, M. Kawabata, A. Nakao and C.-H. Heldin for various Smad constructs, Smad adenoviruses and Smad null cells, and B. Vogelstein for recombinant adenovirus vector systems. We also thank R. Derynck for critical reading of the manuscript, K. Peck and C.-H. Tsai for instructions on microarray analysis, C.-N. Tsai for advice on the recombinant adenovirus construction and G. Lin for his help in the initial phase of this research. This work was supported by National Science Council Frontier Grant 90-2321-B-002-004 to R.-H.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Hwa Chen.

Supplementary information

Table S1

List of genes whose expression was not altered by TGF- treatment of Hep3B cells. (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, CW., Chen, CH., Chen, CC. et al. TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4, 51–58 (2002). https://doi.org/10.1038/ncb731

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing