Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of Crm1–p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation

Abstract

Poly(ADP-ribose) polymerase 1 (PARP-1) and p53 are two key proteins in the DNA-damage response. Although PARP-1 is known to poly(ADP-ribosyl)ate p53, the role of this modification remains elusive. Here, we identify the major poly(ADP-ribosyl)ated sites of p53 by PARP-1 and find that PARP-1-mediated poly(ADP-ribosyl)ation blocks the interaction between p53 and the nuclear export receptor Crm1, resulting in nuclear accumulation of p53. These findings molecularly link PARP-1 and p53 in the DNA-damage response, providing the mechanism for how p53 accumulates in the nucleus in response to DNA damage. PARP-1 becomes super-activated by binding to damaged DNA, which in turn poly(ADP-ribosyl)ates p53. The nuclear export machinery is unable to target poly(ADP-ribosyl)ated p53, promoting accumulation of p53 in the nucleus where p53 exerts its transactivational function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of the major poly(ADP-ribosyl)ation sites of mouse p53.
Figure 2: Poly(ADP-ribosyl)ation of p53 is required for its nuclear accumulation.
Figure 3: Subcellular localization patterns and transactivation activities of endogenous p53 in DNA-damaged PARP-1−/− cells.
Figure 4: Poly(ADP-ribosyl)ation of p53 blocks its export from the nucleus.
Figure 5: Poly(ADP-ribosyl)ation of p53 inhibits its interaction with Crm1 nuclear export receptor.

Similar content being viewed by others

References

  1. Vousden, K. H. Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta 1602, 47–59 (2002).

    CAS  PubMed  Google Scholar 

  2. Gottifredi, V. & Prives, C. The S phase checkpoint: when the crowd meets at the fork. Semin. Cell Dev. Biol. 16, 355–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).

    Article  CAS  Google Scholar 

  4. Herceg, Z. & Wang, Z.-Q. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 477, 97–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Bürkle, A. Poly(ADP-ribosyl)ation, a DNA damage-driven protein modification and regulator of genomic instability. Cancer Lett. 163, 1–5 (2001).

    Article  PubMed  Google Scholar 

  6. Wesierska-Gadek, J., Schmid, G. & Cerni, C. ADP-ribosylation of wild-type p53 in vitro: binding of p53 protein to specific p53 consensus sequence prevents its modification. Biochem. Biophys. Res. Commun. 224, 96–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Mendoza-Alvarez, H. & Alvarez-Gonzalez, R. Regulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation. J. Biol. Chem. 276, 36425–36430 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Simbulan-Rosenthal, C. M., Rosenthal, D. S., Luo, R. & Smulson, M. E. Poly(ADP-ribosyl)ation of p53 during apoptosis in human osteosarcoma cells. Cancer Res. 59, 2190–2194 (1999).

    CAS  PubMed  Google Scholar 

  9. Kanai, M., Tong, W.-M., Sugihara, E., Wang, Z.-Q., Fukasawa, K. & Miwa, M. Involvement of poly(ADP-ribose) polymerase 1 and poly(ADP-ribosyl)ation in regulation of centrosome function. Mol. Cell. Biol. 23, 2451–2462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaziri, H. et al. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J. 16, 6018–6033 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valenzuela, M. T. et al. PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene 21, 1108–1116 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Wieler, S., Gagné, J., Vaziri, H., Poirier, G. G. & Benchimol, S. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J. Biol. Chem. 278, 18914–18921 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Agarwal, M. L., Agarwal, A., Taylor, W. R., Wang, Z.-Q., Wagner, E. F. & Stark, G. R. Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADP-ribose polymerase. Oncogene 15, 1035–1041 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Michael, D. & Oren, M. The p53–Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 13, 49–58 (2003).

  15. Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288–7293 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lain, S., Midgley, C., Sparks, A., Lane, E. B. & Lane, D. P. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODs. Exp. Cell Res. 248, 457–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Lohrum, M. A., Woods, D. B., Ludwig, R. L., Balint, E. & Vousden, K. H. C-terminal ubiquitination of p53 contributes to nuclear export. Mol. Cell. Biol. 21, 8521–8532 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Y. & Xiong, Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292, 1910–1915 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Stommel, J. M., Marchenko, N. D., Jimenez, G. S., Moll, U. M., Hope, T. J. & Wahl, G. M. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wesierska-Gadek, J., Wojciechowski, J. & Schmid, G. Central and carboxy-terminal regions of human p53 protein are essential for interaction and complex formation with PARP-1. J. Cell Biochem. 89, 220–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, W., Pochampally, R., Chen, L., Traidej, M., Wang, Y. & Chen, J. Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene 19, 232–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Geyer, R. K., Yu, Z. K. & Maki, C. G. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nature Cell Biol. 2, 569–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Boyd, S. D., Tsai, K. Y. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biol. 2, 563–568 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Kubbutat, M. H., Jones, S. N. & Vousden, K. Regulation of p53 stability by MDM2. Nature 387, 299–303 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Inoue, T., Wu, L., Stuart, J. & Maki, C. G. Control of p53 nuclear accumulation in stressed cells. FEBS Lett. 579, 4978–4984 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Wesierska-Gadek, J. & Schmid, G. Poly(ADP-ribose) polymerase-1 regulates the stability of the wild-type p53 protein. Cell. Mol. Biol. Lett. 6, 117–140 (2001).

    CAS  PubMed  Google Scholar 

  28. Lu, W., Chen, L., Peng, Y. & Chen, J. Activation of p53 by roscovitine-mediated suppression of MDM2 expression. Oncogene 20, 3206–3216 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Sherr, C. J. Divorcing ARF and p53: an unsettled case. Nature Rev. Cancer 6, 663–673 (2006).

    Article  CAS  Google Scholar 

  30. Simbulan-Rosenthal, C. M., Rosenthal, D. S., Ding, R., Bhatia, K. & Smulson, M. E. Prolongation of the p53 response to DNA strand breaks in cells depleted of PARP by antisense RNA expression. Biochem. Biophys. Res. Commun. 253, 864–868 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Moll, U. M., Wolff, S., Speidel, D. & Deppert, W. Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. 17, 631–636 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Tewari, M. et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801–809 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Malanga, M., Pleschke, J. M., Kleczkowska, H. E. & Althaus, F. R. Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J. Biol. Chem. 273, 11839–11843 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kraus, W. L. & Lis, J. T. PARP goes transcription. Cell 113, 677–683 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Kuroishi, S. Takano, and C. French for technical assistance. We also thank Z.-Q. Wang for PARP-1+/+ and PARP-1−/− MEFs, and X. Wang for the Crm1 plasmids. This research was supported by National Institute of Health (HL072889 to A.H.B, and CA90522 and CA95925 to K.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Fukasawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Title

Supplementary Figures S1, S2, S3, S4, S5 and S6 (PDF 435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanai, M., Hanashiro, K., Kim, SH. et al. Inhibition of Crm1–p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 9, 1175–1183 (2007). https://doi.org/10.1038/ncb1638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing