Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasma membrane nanoswitches generate high-fidelity Ras signal transduction

Abstract

Ras proteins occupy dynamic plasma membrane nanodomains called nanoclusters. The significance of this spatial organization is unknown. Here we show, using in silico and in vivo analyses of mitogen-activated protein (MAP) kinase signalling, that Ras nanoclusters operate as sensitive switches, converting graded ligand inputs into fixed outputs of activated extracellular signal-regulated kinase (ERK). By generating Ras nanoclusters in direct proportion to ligand input, cells build an analogue–digital–analogue circuit relay that transmits a signal across the plasma membrane with high fidelity. Signal transmission is completely dependent on Ras spatial organization and fails if nanoclustering is abrogated. A requirement for high-fidelity signalling may explain the non-random distribution of other plasma membrane signalling complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raf is recruited to K-ras nanoclusters on the plasma membrane.
Figure 2: Spatial model of MAPK activation in Ras signalling nanoclusters.
Figure 3: Ras nanocluster formation.
Figure 4: Comparison of switch-like and graded MAPK module outputs on ERKpp generation.
Figure 5: Ras nanoclustering is essential for signal transduction.
Figure 6: Ras nanoswitches are essential for high-fidelity signal transduction.

Similar content being viewed by others

References

  1. Murakoshi, H. et al. Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl Acad. Sci. USA 101, 7317–7322 (2004).

    Article  CAS  Google Scholar 

  2. Plowman, S., Muncke, C., Parton, R. G. & Hancock, J. F. H-ras, K-ras and inner plasma membrane raft proteins operate in nanoclusters that exhibit differential dependence on the actin cytoskeleton. Proc. Natl Acad. Sci. USA 102, 15500–15505 (2005).

    Article  CAS  Google Scholar 

  3. Hancock, J. F. & Parton, R. G. Ras plasma membrane signalling platforms. Biochem. J. 389, 1–11 (2005).

    Article  CAS  Google Scholar 

  4. Prior, I. A., Muncke, C., Parton, R. G. & Hancock, J. F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    Article  CAS  Google Scholar 

  5. Niv, H., Gutman, O., Kloog, Y. & Henis, Y. I. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol. 157, 865–872 (2002).

    Article  CAS  Google Scholar 

  6. Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol. 7, 456–462 (2006).

    Article  CAS  Google Scholar 

  7. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    Article  CAS  Google Scholar 

  8. Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

    Article  CAS  Google Scholar 

  9. Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351 Pt 2, 289–305 (2000).

    Article  Google Scholar 

  10. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  11. Hibino, K. et al. Single- and multiple-molecule dynamics of the signaling from H-Ras to cRaf-1 visualized on the plasma membrane of living cells. ChemPhysChem 4, 748–753 (2003).

    Article  CAS  Google Scholar 

  12. Li, W., Han, M. & Guan, K. L. The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev. 14, 895–900 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sieburth, D. S., Sun, Q. & Han, M. SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94, 119–130 (1998).

    Article  CAS  Google Scholar 

  14. Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E. & Kloog, Y. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20, 7486–7493 (2001).

    Article  CAS  Google Scholar 

  15. Elad-Sfadia, G., Haklai, R., Balan, E. & Kloog, Y. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 279, 34922–34930 (2004).

    Article  CAS  Google Scholar 

  16. Huang, C. Y. & Ferrell, J. E. Jr. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 93, 10078–10083 (1996).

    Article  CAS  Google Scholar 

  17. Ferrell, J. E. Jr & Bhatt, R. R. Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J. Biol. Chem. 272, 19008–19016 (1997).

    Article  CAS  Google Scholar 

  18. Ferrell, J. E. Jr & Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280, 895–898 (1998).

    Article  CAS  Google Scholar 

  19. Levchenko, A., Bruck, J. & Sternberg, P. W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl Acad. Sci. USA 97, 5818–5823 (2000).

    Article  CAS  Google Scholar 

  20. Bhalla, U. S., Ram, P. T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002).

    Article  CAS  Google Scholar 

  21. Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol. 20, 370–375 (2002).

    Article  Google Scholar 

  22. Mason, C. S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137–2148 (1999).

    Article  CAS  Google Scholar 

  23. Roy, S., Lane, A., Yan, J., McPherson, R. & Hancock, J. F. Activity of plasma membrane recruited Raf-1 is regulated by Ras via the Raf zinc finger. J. Biol. Chem. 272, 20139–20145 (1997).

    Article  CAS  Google Scholar 

  24. Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  Google Scholar 

  25. Harding, A., Tian, T., Westbury, E., Frische, E. & Hancock, J. F. Subcellular localization determines MAP kinase signal output. Curr. Biol. 15, 869–873 (2005).

    Article  CAS  Google Scholar 

  26. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    Article  CAS  Google Scholar 

  27. Voice, J., Klemke, R., Le, A. & Jackson, J. Four human Ras homologs differ in their ability to activate Raf-1, induce transformation and stimulate cell motility. J. Biol. Chem. 274, 17164–17170 (1999).

    Article  CAS  Google Scholar 

  28. Yan, J., Roy, S., Apolloni, A., Lane, A. & Hancock, J. F. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 273, 24052–24056. (1998).

    Article  CAS  Google Scholar 

  29. Apolloni, A., Prior, I. A., Lindsay, M., Parton, R. G. & Hancock, J. F. H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell. Biol. 20, 2475–2487. (2000).

    Article  CAS  Google Scholar 

  30. Choy, E. et al. Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69–80 (1999).

    Article  CAS  Google Scholar 

  31. Roy, S., Wyse, B. & Hancock, J. F. H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol. Cell. Biol. 22, 5128–5140 (2002).

    Article  CAS  Google Scholar 

  32. Whitehurst, A., Cobb, M. H. & White, M. A. Stimulus-coupled spatial restriction of extracellular signal-regulated kinase 1/2 activity contributes to the specificity of signal-response pathways. Mol. Cell. Biol. 24, 10145–10150 (2004).

    Article  CAS  Google Scholar 

  33. Mackeigan, J. P., Murphy, L. O., Dimitri, C. A. & Blenis, J. Graded mitogen-activated protein kinase activity precedes switch-like c-Fos induction in mammalian cells. Mol. Cell. Biol. 25, 4676–4682 (2005).

    Article  CAS  Google Scholar 

  34. Bluthgen, N. & Herzel, H. How robust are switches in intracellular signaling cascades? J. Theor. Biol. 225, 293–300 (2003).

    Article  Google Scholar 

  35. Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  Google Scholar 

  36. Ferrell, J. E. & Xiong, W. Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. Chaos 11, 227–236 (2001).

    Article  CAS  Google Scholar 

  37. Jaumot, M. & Hancock, J. F. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20, 3949–3958. (2001).

    Article  CAS  Google Scholar 

  38. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  39. Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    Article  CAS  Google Scholar 

  40. Harding, A., Hsu, V., Kornfeld, K. & Hancock, J. F. Identification of residues and domains of Raf important for function in vivo and in vitro. J. Biol. Chem. 278, 45519–45527 (2003).

    Article  CAS  Google Scholar 

  41. Hancock, J. F. & Prior, I. A. Electron microscopic imaging of Ras signaling domains. Methods 37, 165–172 (2005).

    Article  CAS  Google Scholar 

  42. Clayton, A. H., Hanley, Q. S. & Verveer, P. J. Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J. Microsc. 213, 1–5 (2004).

    Article  CAS  Google Scholar 

  43. Esposito, A., Gerritsen, H. C. & Wouters, F. S. Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis. Biophys. J. 89, 4286–4299 (2005).

    Article  CAS  Google Scholar 

  44. Verveer, P. J. & Bastiaens, P. I. Evaluation of global analysis algorithms for single frequency fluorescence lifetime imaging microscopy data. J. Microsc. 209, 1–7 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Queensland Cancer Fund and The National Health and Medical Research Council, Australia. The Institute for Molecular Bioscience is a Special Research Centre of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Hancock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1, 2, 3, 4, and 5 and Supplementary Tables 1 2 and 3 (PDF 1570 kb)

Supplementary Methods (PDF 1626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, T., Harding, A., Inder, K. et al. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat Cell Biol 9, 905–914 (2007). https://doi.org/10.1038/ncb1615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing