Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct enzyme combinations in AKAP signalling complexes permit functional diversity

Abstract

Specificity in cell signalling can be influenced by the targeting of different enzyme combinations to substrates. The A-kinase anchoring protein AKAP79/150 is a multivalent scaffolding protein that coordinates the subcellular localization of second-messenger-regulated enzymes, such as protein kinase A, protein kinase C and protein phosphatase 2B. We developed a new strategy that combines RNA interference of the endogenous protein with a protocol that selects cells that have been rescued with AKAP79/150 forms that are unable to anchor selected enzymes. Using this approach, we show that AKAP79/150 coordinates different enzyme combinations to modulate the activity of two distinct neuronal ion channels: AMPA-type glutamate receptors and M-type potassium channels. Utilization of distinct enzyme combinations in this manner provides a means to expand the repertoire of cellular events that the same AKAP modulates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA interference of AKAP79 in HEK293 cells.
Figure 2: PP2B is a fundamental component of the GluR1–AKAP79/150 signalling network in HEK293 cells.
Figure 3: RNA interference of SAP97 in HEK293 cells.
Figure 4: Modulation of AMPA channels with modified AKAP complexes.
Figure 5: PKA activation is required for maintaining AMPA currents.
Figure 6: AKAP150 facilitates selective M-current suppression.
Figure 7: Functional dissection of an M-channel–AKAP complex.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  2. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  3. Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  Google Scholar 

  4. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    Article  CAS  Google Scholar 

  5. Wong, W. & Scott, J. D. AKAP signalling complexes: Focal points in space and time. Nature Rev. Mol. Cell Biol. 5, 959–971 (2004).

    Article  CAS  Google Scholar 

  6. Carr, D. W., Stofko-Hahn, R. E., Fraser, I. D. C., Cone, R. D. & Scott, J. D. Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins: characterization of AKAP79. J. Biol. Chem. 24, 16816–16823 (1992).

    Google Scholar 

  7. Klauck, T. M. et al. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271, 1589–1592 (1996).

    Article  CAS  Google Scholar 

  8. Gao, T. et al. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19, 185–196 (1997).

    Article  CAS  Google Scholar 

  9. Fraser, I. D. & Scott, J. D. Modulation of ion channels: a 'current' view of AKAPs. Neuron 23, 423–426 (1999).

    Article  CAS  Google Scholar 

  10. Hoshi, N. et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nature Neurosci. 6, 564–571 (2003).

    Article  CAS  Google Scholar 

  11. Banke, T. G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000).

    Article  CAS  Google Scholar 

  12. Esteban, J. A. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nature Neurosci. 6, 136–143 (2003).

    Article  CAS  Google Scholar 

  13. Tavalin, S. J. et al. Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J. Neurosci. 22, 3044–3051 (2002).

    Article  CAS  Google Scholar 

  14. Carr, D. W., Hausken, Z. E., Fraser, I. D., Stofko-Hahn, R. E. & Scott, J. D. Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J. Biol. Chem. 267, 13376–13382 (1992).

    CAS  PubMed  Google Scholar 

  15. Faux, M. C. & Scott, J. D. Regulation of the AKAP79-protein kinase C interaction by Ca2+/calmodulin. J. Biol. Chem. 272, 17038–17044 (1997).

    Article  CAS  Google Scholar 

  16. Dell'Acqua, M. L., Dodge, K. L., Tavalin, S. J. & Scott, J. D. Mapping the protein phosphatase-2B anchoring site on AKAP79. Binding and inhibition of phosphatase activity are mediated by residues 315–360. J. Biol. Chem. 277, 48796–48802 (2002).

    Article  CAS  Google Scholar 

  17. Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signalling. Trends Cell Biol. 10, 274–280 (2000).

    Article  CAS  Google Scholar 

  18. Brown, D. A. & Adams, P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283, 673–676 (1980).

    Article  CAS  Google Scholar 

  19. Marrion, N. V. Control of M-current. Annu. Rev. Physiol. 59, 483–504 (1997).

    Article  CAS  Google Scholar 

  20. Suh, B. C. & Hille, B. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35, 507–520 (2002).

    Article  CAS  Google Scholar 

  21. Zhang, H. et al. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37, 963–975 (2003).

    Article  CAS  Google Scholar 

  22. Bosma, M. M. & Hille, B. Protein kinase C is not necessary for peptide-induced suppression of M current or for desensitization of the peptide receptors. Proc. Natl Acad. Sci. USA 86, 2943–2947 (1989).

    Article  CAS  Google Scholar 

  23. Cruzblanca, H., Koh, D. S. & Hille, B. Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons. Proc. Natl Acad. Sci. USA 95, 7151–7156 (1998).

    Article  CAS  Google Scholar 

  24. Dell'Acqua, M. L., Faux, M. C., Thorburn, J., Thorburn, A. & Scott, J. D. Membrane-targeting sequences on AKAP79 bind phosphatidylinositol-4, 5- bisphosphate. EMBO J. 17, 2246–2260 (1998).

    Article  CAS  Google Scholar 

  25. Edwards, A. S. & Newton, A. C. Phosphorylation at conserved carboxyl-terminal hydrophobic motif regulates the catalytic and regulatory domains of protein kinase C. J. Biol. Chem. 272, 18382–18390 (1997).

    Article  CAS  Google Scholar 

  26. Smith, W. B., Starck, S. R., Roberts, R. W. & Schuman, E. M. Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 45, 765–779 (2005).

    Article  CAS  Google Scholar 

  27. Marrion, N. V. Calcineurin regulates M channel modal gating in sympathetic neurons. Neuron 16, 163–173 (1996).

    Article  CAS  Google Scholar 

  28. Cooper, E. C. et al. Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proc. Natl Acad. Sci. USA 97, 4914–4919 (2000).

    Article  CAS  Google Scholar 

  29. Westphal, R. S. et al. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285, 93–96 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. J. Carlisle Michel and R. Goodman for insightful comments on the manuscript and R. Mouton for technical assistance. This work was supported by grant no. GM48231 from the National Institutes of Health to J.D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Scott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshi, N., Langeberg, L. & Scott, J. Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol 7, 1066–1073 (2005). https://doi.org/10.1038/ncb1315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing