Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport

Abstract

Cortactin is an actin-binding protein that has recently been implicated in endocytosis. It binds directly to dynamin-2 (Dyn2), a large GTPase that mediates the formation of vesicles from the plasma membrane and the Golgi. Here we show that cortactin associates with the Golgi to regulate the actin- and Dyn2-dependent transport of cargo. Cortactin antibodies stain the Golgi apparatus, labelling peripheral buds and vesicles that are associated with the cisternae. Notably, in vitro or intact-cell experiments show that activation of Arf1 mediates the recruitment of actin, cortactin and Dyn2 to Golgi membranes. Furthermore, selective disruption of the cortactin–Dyn2 interaction significantly reduces the levels of Dyn2 at the Golgi and blocks the transit of nascent proteins from the trans-Golgi network, resulting in swollen and distended cisternae. These findings support the idea of an Arf1-activated recruitment of an actin, cortactin and Dyn2 complex that is essential for Golgi function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunofluorescence staining of cultured epithelial cells reveals a localization of cortactin to the Golgi.
Figure 2: Cortactin is in intimate contact with Golgi-associated buds and vesicles.
Figure 3: Binding of cortactin and dynamin to isolated Golgi membranes is dependent upon Arf1-activated actin recruitment.
Figure 4: Disruption of cortactin function reduces Dyn2 recruitment to the Golgi apparatus.
Figure 5: VSV-G-ts–GFP that is transported from the ER accumulates in the Golgi of cells expressing truncated cortactin proteins.
Figure 6: BHK-21 cells expressing CortΔSH3 accumulate large amounts of nascent VSV-G protein and show large, distended Golgi cisternae.
Figure 7: Expression of truncated cortactin and dynamin blocks the movement of VSV-G protein from the TGN to the cell surface.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Stamnes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol. 14, 428–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Lippincott-Schwartz, J. Cytoskeletal proteins and Golgi dynamics. Curr. Opin. Cell Biol. 10, 52–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. De Matteis, M. A. & Morrow, J. S. The role of ankyrin and spectrin in membrane transport and domain formation. Curr. Opin. Cell Biol. 10, 542–549 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Fucini, R. V., Chen, J. L., Sharma, C., Kessels, M. M. & Stamnes, M. Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1. Mol. Biol. Cell 13, 621–631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luna, A. et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol. Biol. Cell 13, 866–879 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fucini, R. V. et al. Activated ADP-ribosylation factor assembles distinct pools of actin on golgi membranes. J. Biol. Chem. 275, 18824–18829 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nature Cell Biol. 4, E236–E242 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. di Campli, A. et al. Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements. Cell Motil. Cytoskeleton 43, 334–348 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Valderrama, F. et al. Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur. J. Cell Biol. 76, 9–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Cao, H. et al. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Cell Biol. 23, 2162–2170 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McNiven, M. A. et al. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J. Cell Biol. 151, 187–198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. McNiven, M. A. Dynamin: a molecular motor with pinchase action. Cell 94, 151–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Hinshaw, J. E. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483–519 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McNiven, M. A., Cao, H., Pitts, K. R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Orth, J. D. & McNiven, M. A. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Qualmann, B., Kessels, M. M. & Kelly, R. B. Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol. 150, F111–F116 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Schafer, D. A. Coupling actin dynamics and membrane dynamics during endocytosis. Curr. Opin. Cell Biol. 14, 76–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Krueger, E. W., Orth, J. D., Cao, H. & McNiven, M. A. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell 14, 1085–1096 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Orth, J. D., Krueger, E. W., Cao, H. & McNiven, M. A. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl Acad. Sci. USA 99, 167–172 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leelavathi, D. E., Estes, L. W., Feingold, D. S. & Lombardi, B. Isolation of a Golgi-rich fraction from rat liver. Biochim. Biophys. Acta 211, 124–138 (1970).

    Article  CAS  Google Scholar 

  24. Weed, S. A., Du, Y. & Parsons, J. T. Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J. Cell Sci. 111, 2433–2443 (1998).

    CAS  PubMed  Google Scholar 

  25. Schwaninger, R., Plutner, H., Davidson, H. W., Pind, S. & Balch, W. E. Transport of protein between endoplasmic reticulum and Golgi compartments in semiintact cells. Methods Enzymol. 219, 110–124 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, W. J., Goodhouse, J. & Farquhar, M. G. Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes. J. Cell Biol. 103, 1235–1247 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Matovcik, L. M., Goodhouse, J. & Farquhar, M. G. The recycling itinerary of the 46 kDa mannose 6-phosphate receptor — Golgi to late endosomes — coincides with that of the 215 kDa M6PR. Eur. J. Cell Biol. 53, 203–211 (1990).

    CAS  PubMed  Google Scholar 

  28. Benmerah, A., Bayrou, M., Cerf-Bensussan, N. & Dautry-Varsat, A. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J. Cell Sci. 112, 1303–1311 (1999).

    CAS  PubMed  Google Scholar 

  29. Jones, S. M., Howell, K. E., Henley, J. R., Cao, H. & McNiven, M. A. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573–577 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. De Matteis, M. A. & Morrow, J. S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113, 2331–2343 (2000).

    CAS  PubMed  Google Scholar 

  31. Erickson, J. W., Zhang, C., Kahn, R. A., Evans, T. & Cerione, R. A. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem. 271, 26850–26854 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Cao, H., Thompson, H. M., Krueger, E. W. & McNiven, M. A. Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J. Cell Sci. 113, 1993–2002 (2000).

    CAS  PubMed  Google Scholar 

  33. Maier, O., Knoblich, M. & Westermann, P. Dynamin II binds to the trans-Golgi network. Biochem. Biophys. Res. Commun. 223, 229–233 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Weaver, A. M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Weaver, A. M. et al. Interaction of cortactin and N-WASp with Arp2/3 complex. Curr. Biol. 12, 1270–1278 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Henley, J. R. & McNiven, M. A. Association of a dynamin-like protein with the Golgi apparatus in mammalian cells. J. Cell Biol. 133, 761–775 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Cao, H., Garcia, F. & McNiven, M. A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anderson, K. L. & McNiven, M. A. Vesicle dynamics during regulated secretion in a novel pancreatic acinar cell in vitro model. Eur. J. Cell Biol. 66, 25–38 (1995).

    CAS  PubMed  Google Scholar 

  40. Toomre, D., Keller, P., White, J., Olivo, J. C. & Simons, K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112, 21–33 (1999).

    CAS  PubMed  Google Scholar 

  41. Davidson, H. W. & Balch, W. E. Differential inhibition of multiple vesicular transport steps between the endoplasmic reticulum and trans-Golgi network. J. Biol. Chem. 268, 4216–4226 (1993).

    CAS  PubMed  Google Scholar 

  42. Nishimura, N., Plutner, H., Hahn, K. & Balch, W. E. The delta subunit of AP-3 is required for efficient transport of VSV-G from the trans-Golgi network to the cell surface. Proc. Natl Acad. Sci. USA 99, 6755–6760 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (DK56647) to M.A.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. McNiven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 592 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, H., Weller, S., Orth, J. et al. Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol 7, 483–492 (2005). https://doi.org/10.1038/ncb1246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing