Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Historical Perspective
  • Published:

Dynamics and genome-centricity of interchromatin domains in the nucleus

Abstract

The notion that the interior of the nucleus is compartmentalized goes back to the discovery of the nucleolus in the 1830s. Today, we know that numerous, discrete domains related to gene expression exist within the interchromatin spaces of the interphase nucleus. These domains might arise from, and thus be positioned by, the transcriptional activity of the chromosomes, themselves tethered to the nuclear envelope, or they might assemble autonomously. Beyond their roles in gene expression or other nuclear functions, the dynamic behaviour of some of these interchromatin domains is providing clues to the modes of mass transport operating in the nucleus, as well as to the long-elusive deep structure of the nucleoplasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some nuclear domains 'then and now'.
Figure 2: IGC tethering or mobility.

Similar content being viewed by others

References

  1. Barnes, J. in The Complete Works of Aristotle. Parts of Animals, Books II–IV (Bekker 646a8–697b30). The Revised Oxford Translation. Bollingen Foundation Series LXX1·2, Vols 1 and 2, 1005–1086 (Princeton University Press, Princeton, NJ, 1984).

    Google Scholar 

  2. Amos, B. Lessons from the history of light microscopy. Nature Cell Biol. 2, E151–E152 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Franke, W. W. Matthias Jacob Schleiden and the definition of the cell nucleus. Eur. J. Cell Biol. 47, 145–156 (1988).

    CAS  PubMed  Google Scholar 

  4. Wagner, R. Einige Bemerkungen und Fragen über das Keimbläschen (vesicula germinativa). Muller's Archiv. Anat. Physiol. Wissenschaft. Med. 373–377 (1835).

  5. Valentin, G. Repertorium für Anatomie und Physiologie, 1, 1–293 (Verlag von Veit und Comp., Berlin, 1836).

    Google Scholar 

  6. Valentin, G. Repertorium für Anatomie und Physiologie, 4, 1–275 (Verlag von Veit und Comp., Berlin, 1839).

    Google Scholar 

  7. Montgomery, T. H. Comparative cytological studies, with especial regard to the morphology of the nucleolus. J. Morph. 15, 265–582 (1898).

    Article  Google Scholar 

  8. Pederson, T. The plurifunctional nucleolus. Nucleic Acids Res. 26, 3871–3876 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vincent, W. S. & Miller, O. L. Jr International Symposium on the Nucleolus. Its Structure and Function. Montevideo, Uruguay. J. Natl Cancer Inst. Monograph 23, 1–610 (1966).

    Google Scholar 

  10. Swift, H. Studies on nuclear fine structure. Brookhaven Symp. Biol. 12, 134–152 (1959).

    CAS  PubMed  Google Scholar 

  11. Monneron, A. & Bernhard, W. Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res. 47, 255–271 (1969).

    Google Scholar 

  12. Reichard, P. & Oswald T. Avery and the Nobel prize in medicine. J. Biol. Chem. 277, 13355–13362 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Zorn, C., Cremer, C., Cremer, T. & Zimmer, J. Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Exp. Cell Res. 124, 111–119 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Comings, D. E. Arrangement of chromatin in the nucleus. Hum. Genet. 53, 131–143 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Cremer, T. et al. Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum. Genet. 62, 201–209 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Manuelidis, L. Individual interphase chromosome domains revealed by in situ hybridization. Hum. Genet. 71, 288–293 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Parada, L. A. & Mistelli, T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 9, 425–432 (2002).

    Article  Google Scholar 

  19. Lichter, P., Cremer, T., Borden, J., Manuelidis, L. & Ward, D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930–939 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, S. & Spector, D. L. Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors. Genes Dev. 5, 2288–2302 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, K. P., Moen, P. T. Jr, Wydner, K. L., Coleman, J. R. & Lawrence, J. B. Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J. Cell Biol. 144, 617–629 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frey, M. R. & Matera, A. G. RNA-mediated interaction of Cajal bodies and U2 snRNA genes. J. Cell Biol. 154, 499–509 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Volpi, E. V. et al. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J. Cell Sci. 113, 1565–1576 (2000).

    CAS  PubMed  Google Scholar 

  25. Williams, R. R. E., Broad, S., Sheer, D. & Ragoussis, J. Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp. Cell Res. 272, 163–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Gall, J. G., Callan, H. G., Wu, Z. & Murphy, C. in Xenopus laevis: Practical Uses in Cell and Molecular Biology. Lampbrush chromosomes. (eds Kay, B. K. and Peng, H. B.) 149–166 (Academic Press, San Diego, CA, 1991).

    Book  Google Scholar 

  27. Tan, E. M. Autoantibodies to nuclear antigens (ANA): their immunobiology and medicine. Adv. Immunol. 33, 167–240 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Fakan, S. & Puvion, E. The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int. Rev. Cytol. 65, 255–299 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Spector, D. L. Macromolecular domains within the cell nucleus. Ann. Rev. Cell Biol. 9, 265–315 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Misteli, T. Protein dynamics: implications for nuclear architecture and gene expression. Science 291, 843–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Gall, J. G. Cajal bodies: the first 100 years. Ann. Rev. Cell Dev. Biol. 16, 273–300 (2000).

    Article  CAS  Google Scholar 

  33. Borden, K. L. B. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol. Cell. Biol. 22, 5259–5269 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thé, G. D., Rivière, M. & Bernhard, W. Examen au microscope électronique de la tumeur VX2 du lapin domestique dérivée du papillome de Shope. Bull. du Cancer 47, 570–584 (1960).

    Google Scholar 

  35. Frazier, J. G. in The Golden Bough: A Study in Comparative Religion (Macmillan, London, 1890).

    Google Scholar 

  36. Misteli, T., Cáceres, J. F. & Spector, D. L. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387, 523–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Wachsmuth, M., Waldeck, W. & Langowski, J. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J. Mol. Biol. 298, 677–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Marshall, W. F., Dernburg, A. F., Harmon, B., Agard, D. A. & Sedat, J. W. Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol. Biol. Cell 7, 825–842 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huen, P., Laroche, T., Raghuraman, M. K. & Gasser, S. M. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 152, 385–400 (2001).

    Article  Google Scholar 

  40. Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Pederson, T. & Aebi, U. Actin in the nucleus — what form and what for? J. Struct. Biol. (in the press).

  42. Huang, S. & Spector, D. L. Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors. Genes Dev. 5, 2288–2302 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Huang, S. & Spector, D. L. Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription. J. Cell Biol. 133, 719–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Pederson, T. Thinking about a nuclear matrix. J. Mol. Biol. 277, 147–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Pederson, T. Half a century of the nuclear matrix. Mol. Biol. Cell 11, 799–805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wasser, M. & Chia, W. The EAST protein of Drosophila controls an expandable nuclear endoskeleton. Nature Cell Biol. 2, 268–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Olave, I. A., Reck-Peterson, S. L. & Crabtree, G. R. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 71, 755–781 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Percipalle, P. et al. Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes. J. Cell Biol. 153, 229–235 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spann, T. P., Goldman, A. E., Wang, C., Huang, S. & Goldman, R. D. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J. Cell Biol. 156, 603–608 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pederson, T. Diffusional protein transport within the nucleus: a message in the medium. Nature Cell. Biol. 2, E73–E74 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Pederson, T. Protein mobility within the nucleus — what are the right moves? Cell 104, 635–638 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Muratani, M. et al. Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nature Cell Biol. 4, 106–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Platani, M., Goldberg, I., Lamond, A. I. & Swedlow, J. R. Cajal body dynamics and association with chromatin are ATP-dependent. Nature Cell Biol. 4, 502–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Stenoien, D. L. et al. FRAP reveals that mobility of oestrogen receptor-a is ligand- and proteasome-dependent. Nature Cell Biol. 3, 15–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Lever, M. A., Th'ng, J. P. H., Sun, X. & Hendzel, M. J. Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408, 873–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, D. & Huang, S. Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J. Cell Biol. 153, 169–176 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boisvert, F.-M., Kruhlak, M. J., Box, A. K., Hendzel, M. J. & Bazett-Jones, D. P. The transcription coactivator CBP is a dynamic component of the promyelocytic leukemia nuclear body. J. Cell Biol. 152, 1099–1106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Edsall, J. T. & Gutfreund, H. in Biothermodynamics: The Study of Biochemical Processes at Equilibrium (Wiley, New York, 1983).

    Google Scholar 

  60. Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119–1131 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Snaar, S., Wiesmeijer, K., Jochemsen, A. G., Tanke, H. J. & Dirks, R. W. Mutational analysis of fibrillarin and its mobility in living human cells. J. Cell Biol. 151, 653–662 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Platani, M., Goldberg, I., Swedlow, J. R. & Lamond, A. I. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J. Cell Biol. 151, 1561–1574 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Politz, J. C. & Pombo, A. Genomics meets nanoscience: probing genes and the cell nucleus at 10−9 meters. Genome Biol. 3, 4007.1–4007.3 (2002).

    Article  Google Scholar 

  64. Ramon y Cajal, S. El núcleo de las células piramidales del cerebro humano y de algunos mammiferos. Trad. Lab. Invest. Biol. Univ. Madrid 8, 27–62 (1910).

    Google Scholar 

  65. Gall, J. G. in A Pictorial History. Views of the Cell (American Society for Cell Biology, Bethesda, MD, 1996).

    Google Scholar 

  66. Raska, I. et al. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp. Cell Res. 195, 27–37 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Matera, A. G. & Frey, M. R. Coiled bodies and genes: Janus or Gemini? Am. J. Hum. Genet. 63, 317–321 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author's work is supported by US National Institutes of Health (NIH) grants GM-21595 and GM-60551, and Human Frontier Science Program Organization grant 1016B.

This paper is warmly dedicated to the memory of John T. Edsall (1902–2002), whose work inspired me and so many others, but whose friendship meant even more.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pederson, T. Dynamics and genome-centricity of interchromatin domains in the nucleus. Nat Cell Biol 4, E287–E291 (2002). https://doi.org/10.1038/ncb1202-e287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1202-e287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing