Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The neurotrophin-receptor-related protein NRH1 is essential for convergent extension movements

Abstract

Early spherical Xenopus laevis embryos are transformed into a streamlined shape through convergent extension movements. Here we report that a p75NTR-related transmembrane protein, NRH1, has an essential function in the regulation of these movements. NRH1 was expressed in marginal zone tissues of the gastrula and in the posterior ectoderm of the neurula. Attenuation of the NRH1 function inhibited convergent extension movements in the embryo and in activin-treated animal caps. NRH1 activated downstream effectors of the Wnt/planar cell polarity pathway: small GTPases and the cascade of MKK7–JNK. Furthermore, gain- and loss-of-function phenotypes of NRH1 were rescued by co-injection of dominant-negative and constitutively active forms of these downstream effectors, respectively, suggesting that NRH1 functions as a positive modulator of planar cell polarity signalling. Interestingly, NRH1 does not require Dishevelled (Xdsh) for the activation of these downstream effectors or translocation of Xdsh to the membrane, suggesting that NRH1 signalling interacts with planar cell polarity signalling downstream of Xdsh. This demonstrates an essential role for p75NTR-related signalling in early embryonic morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure, expression and ligand-binding assays of a novel p75NTR-related protein.
Figure 2: Both gain- and loss-of-function phenotypes of NRH1 exhibit inhibition of convergent extension movements.
Figure 3: NRH1 activates small GTPases through a Frz7/Xdsh-independent pathway.
Figure 4: Activation of the Rac–MKK7–JNK pathway by NRH1 is independent of Xdsh.
Figure 5: NRH1 injection does not affect the subcellular localization of Xdsh.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sasai, N., Mizuseki, K. & Sasai, Y. Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128, 2525–2536 (2001).

    CAS  PubMed  Google Scholar 

  2. Huston, L.D. & Bothwell, M. Expression and function of Xenopus laevis p75NTR suggest evolution of developmental regulatory mechanisms. J. Neurobiol. 49, 79–98 (2001).

    Article  Google Scholar 

  3. Roux, R.P. & Barker, P.A. Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol. 67, 203–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Djiane, A., Riou, J., Umbhauer, M., Boucaut, J. & Shi, D. Role of frizzled7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 127, 3091–3100 (2000).

    CAS  PubMed  Google Scholar 

  5. Moon, R.T. et al. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119, 97–111 (1993).

    CAS  PubMed  Google Scholar 

  6. Veeman, M.T., Axelrod, J.D. & Moon, R.T. A second canon: functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Winklbauer, R., Medina, A., Swain, R.K. & Steinbeisser, H. Frizzled-7 signaling controls tissue separation during Xenopus gastrulation. Nature 413, 856–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Wallingford, J.B., Fraser, S.E. & Harland, R.M. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2, 695–706 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Tada, M. & Smith, J.C. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127, 2227–2238 (2000).

    CAS  PubMed  Google Scholar 

  10. Choi, S. & Han, J. Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway. Dev. Biol. 244, 342–357 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Habas, R., Dawid, I. & He, X. Coactivation of Rac and Rho by Wnt/ Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 17, 295–307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Penzo-Mendèz, A., Umbhauer, M., Djiane, A., Boucaut, J.-C. & Riou, J.-F. Activation of Gβγ signaling downstream of Wnt-11/Xfz7 regulates Cdc42 activity during Xenopus gastrulation. Dev. Biol. 257, 302–314 (2003).

    Article  PubMed  Google Scholar 

  14. Strutt, D.I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–295 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Medina, A. & Steinbeisser, H. Interaction of Frizzled 7 and Dishevelled in Xenopus. Dev. Dyn. 218, 671–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Sumanas, S., Strege, P., Heasman, J. & Ekker, S.C. The putative Wnt receptor Xenopus frizzled-7 functions upstream of β-catenin in vertebrate dorsoventral mesodermal patterning. Development 127, 1981–1990 (2000).

    CAS  PubMed  Google Scholar 

  17. Deardorff, M.A., Tan, C., Conrad, L.J. & Klein, P.S. Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis. Development 125, 2687–2700 (1998).

    CAS  PubMed  Google Scholar 

  18. Wallingford, J.B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kinoshita, N., Iioka, H., Miyakoshi, A. & Ueno, N. PKCδ is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev. 17, 1663–1676 (2002).

    Article  Google Scholar 

  20. Yamanaka, H. et al. JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep. 3, 69–75 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sheldahl, L.C. et al. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 161, 769–777 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rothbächer, U. et al. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J. 19, 1010–1022 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yamashita, S. et al. Stat3 controls cell movements during zebrafish gastrulation. Dev. Cell 2, 363–375 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Yamashita, T., Tucker, K.L. & Barde, Y.-A. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24, 585–593 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Yamashita, T. & Tohyama, M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neurosci. 6, 461–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Saneyoshi, T., Kume, S., Amasaki, Y. & Mikoshiba, K. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417, 295–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Numakawa, T. et al. Nerve growth factor-induced glutamate release is via p75 receptor, ceramide, and Ca from ryanodine receptor in developing cerebellar neurons. J. Biol. Chem. 42, 41259–41269 (2003).

    Article  Google Scholar 

  28. Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R. & He, Z. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Nishinakamura, R. et al. Activation of Stat3 by cytokine receptor gp130 ventralizes Xenopus embryos independent of BMP-4. Dev. Biol. 216, 481–490 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Hirano, T. Yokota and R. Nishinakamura for plasmids; H. Steinbeisser, M. Tada, T. Yamashita, M. Hibi, H. Enomoto and R. Ladher for their advice and comments on this work; H. Inomata for discussion and M. Matsumura for technical assistance. This work was supported by grants to Y.S. from MEXT, the Kobe Cluster Project and the Leading Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Sasai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasai, N., Nakazawa, Y., Haraguchi, T. et al. The neurotrophin-receptor-related protein NRH1 is essential for convergent extension movements. Nat Cell Biol 6, 741–748 (2004). https://doi.org/10.1038/ncb1158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing