Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Loss of SM-B myosin affects muscle shortening velocity and maximal force development

Abstract

We used an exon-specific gene-targeting strategy to generate a mouse model deficient only in the SM-B myosin isoform. Here we show that deletion of exon-5B (specific for SM-B) in the gene for the heavy chain of smooth muscle myosin results in a complete loss of SM-B myosin and switching of splicing to the SM-A isoform, without affecting SM1 and SM2 myosin content. Loss of SM-B myosin does not affect survival or cause any overt smooth muscle pathology. Physiological analysis reveals that absence of SM-B myosin results in a significant decrease in maximal force generation and velocity of shortening in smooth muscle tissues. This is the first in vivo study to demonstrate a functional role for the SM-B myosin isoform. We conclude that the extra seven-residue insert in the surface loop 1 of SM-B myosin is a critical determinant of crossbridge cycling and velocity of shortening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of exon 5b of the SMHC gene.
Figure 2: Expression of SM1 and SM2 myosin.
Figure 3: Contractile functions in bladder smooth muscle.
Figure 4: Expression and phosphorylation of myosin light chains.

Similar content being viewed by others

References

  1. Nagai, R., Larson, D. M. & Periasamy M. Proc. Natl Acad. Sci. USA 85, 1047–1051 (1988).

    Article  CAS  Google Scholar 

  2. Babij, P. & Periasamy, M. J. Mol. Biol. 210, 673–679 (1989).

    Article  CAS  Google Scholar 

  3. Nagai, R., Kuro-o, M., Babij, P. & Periasamy, M. J. Biol. Chem. 264, 9734–9737 (1989).

    CAS  PubMed  Google Scholar 

  4. Paul, R. J., Hewett, T. E. & Martin, A. F. Adv. Exp. Med. Biol. 304, 139–145 (1991).

    Article  CAS  Google Scholar 

  5. Hamada, Y. et al. Biochem. Biophys. Res. Commun. 170, 53–58 (1990).

    Article  CAS  Google Scholar 

  6. Kelley, C. A., Takahashi, M., Yu, J. H. & Adelstein, R. S. J. Biol. Chem. 268, 12848–12854 (1993).

    CAS  PubMed  Google Scholar 

  7. White, S., Martin, A. F. & Periasamy, M. Am. J. Physiol. 264, C1252–C1258 (1993).

    Article  CAS  Google Scholar 

  8. Spudich, J. A. Nature 372, 515–518 (1994).

    Article  CAS  Google Scholar 

  9. Sweeney, H. L. et al. J. Biol. Chem. 273, 6262–6270 (1998).

    Article  CAS  Google Scholar 

  10. Murphy, C. T. & Spudich, J. A. J. Muscle Res. Cell. Motil. 21, 139–151 (2000).

    Article  CAS  Google Scholar 

  11. Wetzel, U., Lutsch, G., Haase, H., Ganten, U. & Morano, I. Circ. Res. 83, 204–209 (1998).

    Article  CAS  Google Scholar 

  12. DiSanto, M. E., Cox, R. H., Wang, Z. & Chacko, S. Am. J. Physiol. 272, C1532–C1542 (1997).

    Article  CAS  Google Scholar 

  13. Jones, R., Steudel, W., White, S., Jacobson, M. & Low, R. Cell Tissue Res. 295, 453–465 (1999).

    Article  CAS  Google Scholar 

  14. White, S. L., Zhou, M. Y., Low, R. B. & Periasamy, M. Am. J. Physiol. 275, C581–C589 (1998).

    Article  CAS  Google Scholar 

  15. Babu, G. J., Warshaw, D. M. & Periasamy, M. Microsc. Res. Tech. 50, 532–540 (2000).

    Article  CAS  Google Scholar 

  16. Rovner, A. S., Freyzon, Y. & Trybus, K. M. J. Muscle Res. Cell. Motil. 18, 103–110 (1997).

    Article  CAS  Google Scholar 

  17. Lauzon, A. M. et al. J. Muscle Res. Cell. Motil. 19, 825–837 (1998).

    Article  CAS  Google Scholar 

  18. Lauzon, A. M., Trybus, K. M. & Warshaw, D. M. Acta Physiol. Scand. 164, 357–361 (1998).

    Article  CAS  Google Scholar 

  19. Loukianov, E. V., Loukianova, T. & Periasamy, M. Biotechniques 23, 376–380 (1997).

    Article  CAS  Google Scholar 

  20. Morano, I. et al. Nature Cell Biol. 2, 371–375 (2000).

    Article  CAS  Google Scholar 

  21. Loukianov, E. et al. Circ. Res. 83, 889–897 (1998).

    Article  CAS  Google Scholar 

  22. Fuglsang, A., Khromov, A., Torok, K., Somlyo, A. V. & Somlyo, A. P. J. Muscle Res. Cell Motil. 14, 666–673 (1993).

    Article  CAS  Google Scholar 

  23. Matthew, J. D., Khromov, A. S., Trybus, K. M., Somlyo, A. P. & Somlyo A. V. J. Biol. Chem. 273, 31289–31296 (1998).

    Article  CAS  Google Scholar 

  24. Huang, Q.-Q., Fisher, S. A. & Brozovich, F. V. J. Biol. Chem. 274, 35095–35098 (1999).

    Article  CAS  Google Scholar 

  25. Barany, M. J. Gen. Physiol. 50, 197–218 (1967).

    Article  Google Scholar 

  26. Sobieszek, A. & Jertschin, P. Electrophoresis 7, 417–425 (1986).

    Article  CAS  Google Scholar 

  27. Gokina, N. I. & Osol, G. Am. J. Physiol. 274, H1920–H1927 (1998).

    CAS  PubMed  Google Scholar 

  28. Mulvany, M. & Halpern, W. Circ. Res. 41, 19–26 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grant HL 38355-15 (to M.P.) and American Heart Association (Ohio Valley) Postdoctoral fellowship 0020372B (to G.J.B). The authors thank K. McElory-Yaggy for expert assistance for the experiments with mesenteric vessels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu Periasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, G., Loukianov, E., Loukianova, T. et al. Loss of SM-B myosin affects muscle shortening velocity and maximal force development. Nat Cell Biol 3, 1025–1029 (2001). https://doi.org/10.1038/ncb1101-1025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-1025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing