Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determinants of molecular motor directionality

Abstract

Work over the past two years has led to a breakthrough in our understanding of the molecular basis of the directionality of the kinesin motor proteins. This breakthrough has come first from the reversal of directionality of the kinesin-related motor Ncd, followed closely by the reversal of kinesin’s directionality and the finding that the Ncd ‘neck’ can convert Ncd or kinesin, which are intrinsically plus-end-directed microtubule motors, into a minus-end motor. These findings raise several outstanding questions, foremost, how does the neck function in motor directionality?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Directionality determinants of kinesin motors.
Figure 2: Neck residues of plus- and minus-end-directed kinesin motors.

Similar content being viewed by others

References

  1. Bloom, G. S. & Endow, S. A. Motor proteins 1: kinesins. Protein Profile 2, 1109–1171 (1995).

    CAS  Google Scholar 

  2. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport . Science 279, 519–526 (1998).

    Article  CAS  Google Scholar 

  3. Sellers, J. V. & Goodson, H. V. Motor proteins 2: myosin. Protein Profile 2, 1323–1423 (1995).

    CAS  PubMed  Google Scholar 

  4. Yang, J. T., Laymon, R. A. & Goldstein, L. S. B. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56, 879–889 ( 1989).

    Article  CAS  Google Scholar 

  5. Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. C. & Goldstein, L. S. B. Evidence that the head of kinesin is sufficient for force generation and motility in vitro. Science 249, 42–47 ( 1990).

    Article  CAS  Google Scholar 

  6. Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A. & Endow, S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem. 268, 9005–9013 ( 1993).

    CAS  PubMed  Google Scholar 

  7. Sablin, E. P. et al. Direction determination in the minus-end-directed kinesin motor ncd. Nature 395, 813– 816 (1998).

    Article  CAS  Google Scholar 

  8. Kozielski, F. et al. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–994 (1997).

    Article  CAS  Google Scholar 

  9. Sheetz, M. P. Motor and cargo interactions. Eur. J. Biochem. 262, 19–25 (1999).

    Article  CAS  Google Scholar 

  10. Endow, S. A. Microtubule motors in spindle and chromosome motility. Eur. J. Biochem. 262, 12–18 ( 1999).

    Article  CAS  Google Scholar 

  11. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry . Nature 365, 721–727 (1993).

    Article  CAS  Google Scholar 

  12. Hunt, A. J., Gittes, F. & Howard, J. The force exerted by a single kinesin molecule against a viscous load. Biophys. J. 67, 766– 781 (1994).

    Article  CAS  Google Scholar 

  13. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773– 784 (1994).

    Article  CAS  Google Scholar 

  14. Meyhöfer, E. >& Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).

    Article  Google Scholar 

  15. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2021–2022 (1997).

    Article  Google Scholar 

  16. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules . Nature 342, 154–158 (1989).

    Article  CAS  Google Scholar 

  17. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  CAS  Google Scholar 

  18. Sack, S. et al. X-ray structure of motor and neck domains from rat brain kinesin . Biochemistry 36, 16155– 16165 (1997).

    Article  CAS  Google Scholar 

  19. Sablin, E. P., Kull, F. J., Cooke, R., Vale, R. D. & Fletterick, R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380, 555– 559 (1996).

    Article  CAS  Google Scholar 

  20. Gulick, A. M., Song, H., Endow, S. A. & Rayment, I. X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg-ADP to 2.3 Å resolution. Biochemistry 37, 1769– 1776 (1998).

    Article  CAS  Google Scholar 

  21. Hurd, D. D. & Saxton, W. M. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila . Genetics 144, 1075– 1085 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Walker, R. A., Salmon, E. D. & Endow, S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780–782 (1990).

    Article  CAS  Google Scholar 

  23. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. B. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159–1165 (1990).

    Article  CAS  Google Scholar 

  24. Endow, S. A. in Guidebook to the Cytoskeletal and Motor Proteins (eds Vale, R. & Kreis, T.) 403–408 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  25. Stewart, R. J., Thaler, J. P. & Goldstein, L. S. B. Direction of microtubule movement is an intrinsic property of the motor domains of kinesin heavy chain and Drosophila ncd protein. Proc. Natl Acad. Sci. USA 90, 5209–5213 (1993).

    Article  CAS  Google Scholar 

  26. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Nucleotide-dependent angular change in kinesin motor domain bound to tubulin . Nature 376, 277–279 (1995).

    Article  CAS  Google Scholar 

  27. Hoenger, A., Sablin, E. P., Vale, R. D., Fletterick, R. J. & Milligan, R. A. Three-dimensional structure of a tubulin-motor-protein complex. Nature 376, 271–274 (1995).

    Article  CAS  Google Scholar 

  28. Kikkawa, M., Ishikawa, T., Wakabayashi, T. & Hirokawa, N. Three-dimensional structure of the kinesin head-microtubule complex. Nature 376, 274–277 ( 1995).

    Article  CAS  Google Scholar 

  29. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl Acad. Sci. USA 93, 9539–9544 (1996).

    Article  CAS  Google Scholar 

  30. Arnal, I., Metoz, F., DeBonis, S. & Wade, R. H. Three-dimensional structure of functional motor proteins on microtubules. Curr. Biol. 6, 1265–1270 ( 1996).

    Article  CAS  Google Scholar 

  31. Henningsen, U. & Schliwa, M. Reversal in the direction of movement of a molecular motor. Nature 389, 93–96 (1997).

    Article  CAS  Google Scholar 

  32. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 ( 1997).

    Article  CAS  Google Scholar 

  33. Endow, S. A. & Fletterick, R. J. Reversing a ‘backwards’ motor. BioEssays 20, 108– 112 (1998).

    Article  Google Scholar 

  34. Endow, S. A. & Waligora, K. W. Determinants of kinesin motor polarity. Science 281, 1200– 1202 (1998).

    Article  CAS  Google Scholar 

  35. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    Article  CAS  Google Scholar 

  36. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 ( 1995).

    Article  CAS  Google Scholar 

  37. Crevel, I. M.-T. C., Lockhart, A. & Cross, R. A. Kinetic evidence for low chemical processivity in ncd and Eg5. J. Mol. Biol. 273, 160– 170 (1997).

    Article  CAS  Google Scholar 

  38. Block, S. M. Kinesin: what gives? Cell 93, 5– 8 (1998).

    Article  CAS  Google Scholar 

  39. Hirose, K., Cross, R. A. & Amos, L. A. Nucleotide-dependent structural changes in dimeric NCD molecules complexed to microtubules. J. Mol. Biol. 278, 389–400 (1998).

    Article  CAS  Google Scholar 

  40. Hirose, K., Löwe, J., Alonso, M., Cross, R. A. & Amos, L. A. Congruent docking of dimeric kinesin and ncd into three-dimensional electron cryomicroscopy maps of microtubule-motor ADP complexes. Mol. Biol. Cell 10, 2063– 2074 (1999).

    Article  CAS  Google Scholar 

  41. Naber, N., Cooke, R. & Pate, E. Binding of ncd to microtubules induces a conformational change near the junction of the motor domain with the neck. Biochemistry 36, 9681–9689 (1997).

    Article  CAS  Google Scholar 

  42. Morii, H., Takenawa, T., Arisaka, F. & Shimizu, T. Identification of kinesin neck region as a stable α-helical coiled coil and its thermodynamic characterization. Biochemistry 36, 1933–1942 (1997).

    Article  CAS  Google Scholar 

  43. Vale, R. D. & Fletterick, R. J. The design plan for the kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745 –777 (1997).

    Article  CAS  Google Scholar 

  44. Sack, S., Kull, F. J. & Mandelkow, E. Motor proteins of the kinesin family. Structure, variations and nucleotide binding sites. Eur. J. Biochem. 262, 1–11 (1999).

    Article  CAS  Google Scholar 

  45. Thrower, D. A., Jordan, M. A., Schaar, B. T., Yen, T. J. & Wilson, L. Mitotic HeLa cells contain a CENP-E-associated minus end-directed microtubule motor. EMBO J. 14, 918–926 (1995).

    Article  CAS  Google Scholar 

  46. Wood, K. W., Sakowicz, R., Goldstein, L. S. B. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357– 366 (1997).

    Article  CAS  Google Scholar 

  47. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–105 ( 1995).

    Article  CAS  Google Scholar 

  48. Schaar, B. T., Chan, G. K. T., Maddox, P., Salmon, E. D. & Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139 , 1373–1382 (1997).

    Article  CAS  Google Scholar 

  49. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  CAS  Google Scholar 

  50. Romberg, L., Pierce, D. W. & Vale, R. D. Role of the kinesin neck region in processive microtubule-based motility. J. Cell Biol. 140, 1407– 1416 (1998).

    Article  CAS  Google Scholar 

  51. Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 ( 1996).

    Article  CAS  Google Scholar 

  52. Tripet, B., Vale, R. D. & Hodges, R. S. Demonstration of coiled-coil interactions within the kinesin neck region using synthetic peptides. J. Biol. Chem. 272, 8946–8956 ( 1997).

    Article  CAS  Google Scholar 

  53. Carr, C. M. & Kim, P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73, 823–832 (1993).

    Article  CAS  Google Scholar 

  54. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  Google Scholar 

  55. Hancock, W. O. & Howard, J. Processivity of the motor protein kinesin requires two heads. J. Cell Biol. 140, 1395–1405 (1998).

    Article  CAS  Google Scholar 

  56. Young, E. C., Mahtani, H. K. & Gelles, J. One-head kinesin derivatives move by a nonprocessive, low-duty ratio mechanism unlike that of two-headed kinesin. Biochemistry 37, 3467–3479 ( 1998).

    Article  CAS  Google Scholar 

  57. Berliner, E., Young, E. C., Anderson, K., Mahtani, H. K. & Gelles, J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373, 718–721 (1995).

    Article  CAS  Google Scholar 

  58. Ray, S., Meyhöfer, E., Milligan, R. A. & Howard, J. Kinesin follows the microtubule’s protofilament axis. J. Cell Biol. 121, 1083–1093 (1993).

    Article  CAS  Google Scholar 

  59. Vale, R. D. & Toyoshima, Y. Y. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cells . Cell 52, 459–469 (1988).

    Article  CAS  Google Scholar 

  60. Wells, A. L. et al. Myosin VI is a myosin that moves backwards. Nature 401, 505–508 ( 1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the NIH. The figures were prepared by A. J. Kim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharyn A. Endow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endow, S. Determinants of molecular motor directionality. Nat Cell Biol 1, E163–E167 (1999). https://doi.org/10.1038/14113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/14113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing