Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability

Abstract

Chaperone proteins are thought to promote the correct folding and assembly of newly synthesized proteins and to facilitate restoration of the folded state under environmental conditions that favour protein denaturation. They are among the most ubiquitous and highly conserved of all proteins. The eukaryotic endoplasmic reticulum (ER) chaperone gp96 in particular has long been thought to be indispensable for cell survival. Here we report that a screen for genes required for the immune response to bacterial endotoxins has identified a B-cell line deficient in gp96. Absence of gp96 is compatible with cellular survival even under stress conditions and causes a defect in the formation of only a small subset of cell surface receptors. Toll-like receptors are retained intracellularly in the absence of gp96, explaining the unresponsiveness of the mutant to microbial stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E4.126 mutant cells are unresponsive to bacterial components.
Figure 2: E4.126 mutant cells have a functional TLR4 signaling pathway but cannot export Toll-like receptors (TLRs).
Figure 3: Absence of the endoplasmic reticulum chaperone gp96 causes unresponsiveness to bacterial stimuli.
Figure 4: Physical interaction between gp96 and Toll-like receptors (TLRs).
Figure 5: Structure–function analysis of gp96.
Figure 6: Unimpaired stress resistance in the absence of gp96.

Similar content being viewed by others

References

  1. Aderem, A. A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  5. Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Hartl, F. U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Johnson, J. L. & Craig, E. A. Protein folding in vivo: unraveling complex pathways. Cell 90, 201–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Welch, W. J. & Feramisoc, J. R. Purification of the major mammalian heat shock proteins. J. Biol. Chem. 257, 14949–14959 (1982).

    CAS  PubMed  Google Scholar 

  11. Wearsch, P. A. & Nicchitta, C. V. Purification and partial molecular characterization of GRP94, an ER resident chaperone. Protein Expr. Purif. 7, 114–121 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Borkovich, K. A., Farrelly, F. W., Finkelstein, D. B., Taulien, J. & Lindquist, S. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell Biol. 9, 3919–3930 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cutforth, T. & Rubin, G. M. Mutations in Hsp83 and Cdc37 impair signaling by the Sevenless receptor tyrosine kinase in Drosophila. Cell 77, 1027–1036 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Humphries, M. J. Integrin structure. Biochem. Soc. Trans. 28, 311–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Dziarski, R., Wang, Q., Miyake, K., Kirschning, C. J. & Gupta, D. MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. J. Immunol. 166, 1938–1944 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. U. S. A. 97, 13766–13771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buchner, J. Hsp90 & Co.—a holding for folding. Trends Biochem. Sci. 24, 136–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Pearl, L. H. & Prodromou, C. Structure and in vivo function of Hsp90. Curr. Opin. Struct. Biol. 10, 46–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Stebbins, C. E. et al. Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Prodromou, C. et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Prodromou, C., Roe, S. M., Piper, P. W. & Pearl, L. H. A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone. Nature Struct. Biol. 4, 477–482 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Panaretou, B. et al. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17, 4829–4836 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Obermann, W. M., Sondermann, H., Russo, A. A., Pavletich, N. P. & Hartl, F. U. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J. Cell Biol. 143, 901–910 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grenert, J. P., Johnson, B. D. & Toft, D. O. The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J. Biol. Chem. 274, 17525–17533 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Wigley, D. B., Davies, G. J., Dodson, E. J., Maxwell, A. & Dodson, G. Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351, 624–629 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Ban, C. & Yang, W. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95, 541–552 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Bresnick, E. H., Dalman, F. C., Sanchez, E. R. & Pratt, W. B. Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J. Biol. Chem. 264, 4992–4997 (1989).

    CAS  PubMed  Google Scholar 

  29. Scherrer, L. C., Hutchison, K. A., Sanchez, E. R., Randall, S. K. & Pratt, W. B. A heat shock protein complex isolated from rabbit reticulocyte lysate can reconstitute a functional glucocorticoid receptor–Hsp90 complex. Biochemistry 31, 7325–7329 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Pratt, W. B. & Toft, D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrinol. Rev. 18, 306–360 (1997).

    CAS  Google Scholar 

  31. Srivastava, P. K., Menoret, A., Basu, S., Binder, R. J. & McQuade, K. L. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8, 657–665 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Binder, R. J., Han, D. K. & Srivastava, P. K. CD91: a receptor for heat shock protein gp96. Nature Immunol. 1, 151–155 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Nolan for his ecotropic Phoenix cell line, R. Weng for cell sorting and members of the Seed lab for suggestions and critical feedback. F.R. was the recipient of a fellowship from Deutsche Forschungsgemeinschaft. This work was supported by the US NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Seed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randow, F., Seed, B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol 3, 891–896 (2001). https://doi.org/10.1038/ncb1001-891

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing