Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of RhoA by p120 catenin

Abstract

RhoA organizes actin stress fibres and is necessary for cell transformation by oncogenes such as src and ras. Moreover, RhoA is implicated in cadherin clustering during the formation of adherens junctions. The catenin p120 has also been implicated in cadherin clustering through an unknown mechanism. Here we show that p120 selectively inhibits RhoA activity in vitro and in vivo. RhoA inhibition and the interaction of p120 with cadherins are mutually exclusive, suggesting a mechanism for regulating the recruitment and exchange of RhoA at nascent cell–cell contacts. By affecting RhoA activation, p120 could modulate cadherin functions, including suppression of invasion, neurite extension and junction formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of p120-induced branching by DA RhoA.
Figure 2: RhoA inhibition and p120 overexpression have similar consequences in cells.
Figure 3: p120-overexpressing cells do not respond to LPA stimulation, consistent with the ability of recombinant p120 to affect RhoA activation in vitro .
Figure 4: Inhibition of intrinsic or GEF-induced activation of RhoA by wild-type p120 but not by the p120Δ(662–628) mutant.
Figure 5: Functional relationships between E-cadherin, p120, RhoA and ezrin.

Similar content being viewed by others

References

  1. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–627 ( 1995).

    Article  CAS  Google Scholar 

  2. Yap, A. S. The morphogenetic role of cadherin cell adhesion molecules in human cancer: a thematic review. Cancer Invest. 16, 252 –261 (1998).

    Article  CAS  Google Scholar 

  3. Frixen, U. H. et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol. 113, 173–185 (1991).

    Article  CAS  Google Scholar 

  4. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190– 193 (1998).

    Article  CAS  Google Scholar 

  5. Vleminckx, K., Vakaet, L., Jr., Mareel, M., Fiers, W. & van Roy, F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66, 107–119 (1991).

    Article  CAS  Google Scholar 

  6. Anastasiadis, P. Z. & Reynolds, A. B. The p120 catenin family: complex roles in adhesion, signalling and cancer. J. Cell Sci. 113, 1319–1334 ( 2000).

    CAS  Google Scholar 

  7. Nobes, C. C. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibres, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  8. Braga, V. M., Machesky, L. M., Hall, A. & Hotchin, N. A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J. Cell Biol. 137, 1421 –1431 (1997).

    Article  CAS  Google Scholar 

  9. Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H. & Takai, Y. Regulation of cell–cell adhesion by rac and rho small G proteins in MDCK cells. J. Cell Biol. 139, 1047–1059 (1997).

    Article  CAS  Google Scholar 

  10. Jou, T.S. & Nelson, W.J. Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. J. Cell Biol. 142, 85– 100 (1998).

    Article  CAS  Google Scholar 

  11. Kaibuchi, K., Kuroda, S., Fukata, M. & Nakagawa, M. Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr. Opin. Cell Biol. 11, 591–596 (1999).

    Article  CAS  Google Scholar 

  12. Reynolds, A. B., Daniel, J. M., Mo, Y. Y., Wu, J. & Zhang, Z. The novel catenin p120cas binds classical cadherins and induces an unusual morphological phenotype in NIH3T3 fibroblasts. Exp. Cell Res. 225, 328–337 ( 1996).

    Article  CAS  Google Scholar 

  13. Sekimata, M., Kabuyama, Y., Emori, Y. & Homma, Y. Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho. J. Biol. Chem. 274, 17757– 17762 (1999).

    Article  CAS  Google Scholar 

  14. Kranenburg, O. et al. Activation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction. Mol. Biol. Cell 10, 1851–1857 (1999).

    Article  CAS  Google Scholar 

  15. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibres and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    Article  CAS  Google Scholar 

  16. An, S., Goetzl, E. J. & Lee, H. Signalling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate . J. Cell Biochem. Suppl. 31, 147– 157 (1998).

    Article  Google Scholar 

  17. Dong, J. M., Leung, T., Manser, E. & Lim, L. cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKalpha. J. Biol. Chem. 273, 22554– 22562 (1998).

    Article  CAS  Google Scholar 

  18. Ramakers, G. J. A. & Moolenaar, W. H. Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. Exp. Cell Res. 245, 252–262 ( 1998).

    Article  CAS  Google Scholar 

  19. Debant, A. et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac- specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl Acad. Sci. USA 93, 5466–5471 (1996).

    Article  CAS  Google Scholar 

  20. Sasaki, T. & Takai, Y. The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control . Biochem. Biophys. Res. Commun. 245, 641 –645 (1998).

    Article  CAS  Google Scholar 

  21. Olofsson, B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling . Cell Signal. 11, 545– 554 (1999).

    Article  CAS  Google Scholar 

  22. Mariner, D. J., Wang, J. & Reynolds, A. B. ARVCF localizes to the nucleus and adherens junction and is mutually exclusive with p120ctn in E-cadherin complexes . J. Cell Sci. 113, 1481– 1490 (2000).

    CAS  Google Scholar 

  23. Ren, X. D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    Article  CAS  Google Scholar 

  24. Thoreson, M. A. et al. Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J. Cell Biol. 148, 189– 202 (2000).

    Article  CAS  Google Scholar 

  25. Hirao, M. et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signalling pathway. J. Cell Biol. 135, 37–51 (1996).

    Article  CAS  Google Scholar 

  26. Kotani, H., Takaishi, K., Sasaki, T. & Takai, Y. Rho regulates association of both the ERM family and vinculin with the plasma membrane in MDCK cells . Oncogene 14, 1705–1713 (1997).

    Article  CAS  Google Scholar 

  27. Keirsebilck, A. et al. Molecular cloning of the human p120ctn catenin gene (CTNND1): expression of multiple alternatively spliced isoforms. Genomics 50, 129–146 ( 1998).

    Article  CAS  Google Scholar 

  28. Kinch, M. S., Clark, G. J., Der, C. J. & Burridge, K. Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia. J. Cell Biol. 130, 461–471 (1995).

    Article  CAS  Google Scholar 

  29. Calautti, E. et al. Tyrosine phosphorylation and src family kinases control keratinocyte cell–cell adhesion. J. Cell Biol. 141, 1449–1465 (1998).

    Article  CAS  Google Scholar 

  30. Ozawa, M. & Kemler, R. The membrane-proximal region of the E-cadherin cytoplasmic domain prevents dimerization and negatively regulates adhesion activity. J. Cell Biol. 142, 1605 –1613 (1998).

    Article  CAS  Google Scholar 

  31. Aono, S., Nakagawa, S., Reynolds, A. B. & Takeichi, M. p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J. Cell Biol. 145, 551– 562 (1999).

    Article  CAS  Google Scholar 

  32. Takeuchi, K. et al. Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. J. Cell Biol. 125, 1371–1384 ( 1994).

    Article  CAS  Google Scholar 

  33. Mackay, D. J., Esch, F., Furthmayr, H. & Hall, A. Rho- and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol. 138, 927–938 (1997).

    Article  CAS  Google Scholar 

  34. Lampugnani, M. G. et al. Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J. Cell Sci. 110, 2065–2077 (1997).

    CAS  Google Scholar 

  35. Reynolds, A. B. et al. Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol. Cell. Biol. 14, 8333–8342 ( 1994).

    Article  CAS  Google Scholar 

  36. Wu, J., Mariner, D. J., Thoreson, M. A. & Reynolds, A. B. Production and characterization of monoclonal antibodies to the catenin p120ctn . Hybridoma 17, 175–183 (1998).

    Article  CAS  Google Scholar 

  37. Zhang, B., Zhang, Y., Collins, C.C., Johnson, D. I. & Zheng, Y. A built-in arginine finger triggers the self-stimulatory GTPase- activating activity of rho family GTPases. J. Biol. Chem. 274, 2609–2612 ( 1999).

    Article  CAS  Google Scholar 

  38. Li, R., Zhang, B. & Zheng, Y. Structural determinants required for the interaction between Rho GTPase and the GTPase-activating domain of p190. J. Biol. Chem. 272, 32830–32835 ( 1997).

    Article  CAS  Google Scholar 

  39. Li, R. & Zheng, Y. Residues of the Rho family GTPases Rho and Cdc42 that specify sensitivity to Dbl-like guanine nucleotide exchange factors. J. Biol. Chem. 272, 4671– 4679 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.B.R. was supported in part by NIH grant CA55724 and by the Ingram-Vanderbilt Cancer Center through the Cancer Center support grant CA69485. Y.Z. was supported by NIH grant GM53943. We thank M.A. Schwartz for the GST–RBD construct, M. Symons for Rho family GTPase constructs and helpful discussions and J.M. Daniel for the p120–GST construct and general support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert B. Reynolds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastasiadis, P., Moon, S., Thoreson, M. et al. Inhibition of RhoA by p120 catenin. Nat Cell Biol 2, 637–644 (2000). https://doi.org/10.1038/35023588

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing