Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neurodegenerative stimuli induce persistent ADF/cofilin–actin rods that disrupt distal neurite function

Abstract

Inclusions containing actin-depolymerizing factor (ADF) and cofilin, abundant proteins in adult human brain, are prominent in hippocampal and cortical neurites of the post-mortem brains of Alzheimer's patients, especially in neurites contacting amyloid deposits. The origin and role of these inclusions in neurodegeneration are, however, unknown. Here we show that mediators of neurodegeneration induce the rapid formation of transient or persistent rod-like inclusions containing ADF/cofilin and actin in axons and dendrites of cultured hippocampal neurons. Rods form spontaneously within neurons overexpressing active ADF/cofilin, suggesting that the activation (by dephosphorylation) of ADF/cofilin that occurs in response to neurodegenerative stimuli is sufficient to induce rod formation. Persistent rods that span the diameter of the neurite disrupt microtubules and cause degeneration of the distal neurite without killing the neuron. These findings suggest a common pathway that can lead to loss of synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antibody specificity and immunocytochemical localization of ADF in human hippocampus.
Figure 2: ATP-depletion of cultured neurons induces the formation of cytoplasmic rods containing ADF, cofilin and actin.
Figure 3: Neuronal survival and alterations in levels of phosphorylated ADF and ATP.
Figure 4: Rods contain ADF and actin, but do not stain with Texas Red–phalloidin.
Figure 5: Rod formation occurs in neuronal processes deficient in active mitochondria and mitochondrial recovery is restricted to proximal segments of neurites with rods.
Figure 6: Rods disrupt the microtubule cytoskeleton and inhibit distal neurite function.

Similar content being viewed by others

References

  1. Richarson, J. S. Cerebral microischemia as a potential precipitant of the neurodegenerative cascade of Alzheimer's disease. Annls N.Y. Acad. Sci. 826, 437–439 (1997).

    Article  Google Scholar 

  2. Lenaz, G. Role of mitochondria in oxidative stress and aging. Biochim. Biophys. Acta 1366, 53–67 ( 1998).

    Article  CAS  Google Scholar 

  3. Nicholls, D. G. & Budd, S. L. Mitochondria and neuronal glutamate excitotoxicity. Biochim. Biophys. Acta 1366, 97–112 (1998).

    Article  CAS  Google Scholar 

  4. Smith, M. A. et al. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine . J. Histochem. Cytochem. 46, 731– 735 (1998).

    Article  CAS  Google Scholar 

  5. Schapira, A. H. V. Mitochondrial dysfunction in neurodegenerative disorders. Biochim. Biophys. Acta 1366, 225–233 (1998).

    Article  CAS  Google Scholar 

  6. Rapp, P. R. & Gallagher, M. Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc. Natl Acad. Sci. USA 93, 9926–9930 (1996).

    Article  CAS  Google Scholar 

  7. Rasmussen, T., Schliemann, T., Sorensen, J. C., Zimmer, J. & West, M. J. Memory impaired aged rats. No loss of principal hippocampal and subicular neurons. Neurobiol. Aging 17, 143–147 ( 1996).

    Article  CAS  Google Scholar 

  8. Masliah, E., Terry, R. D., DeTeresa, R. M. & Hansen, L. A. Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease. Neurosci. Lett. 103, 234–239 (1989).

    Article  CAS  Google Scholar 

  9. Williamson, T. L. & Cleveland, D.W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neurosci. 2, 50–56 (1999).

    Article  CAS  Google Scholar 

  10. Hall, G. F., Chu, B., Lee, G & Yao, J. Human tau filaments induce microtubule and synapse loss in an in vivo model of neurofibrillary degenerative disease. J. Cell Sci. 113, 1373–1387 (2000).

    CAS  Google Scholar 

  11. Kuhn, T. B. et al. Regulating actin filament dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases. J. Neurobiol. 44, 126–144 (2000).

    Article  CAS  Google Scholar 

  12. Bamburg, J.R. Proteins of the ADF/cofilin family: essential regulators of actin dynamics . Annu. Rev. Cell Dev. Biol. 15, 185– 230 (1999).

    Article  CAS  Google Scholar 

  13. Blanchoin, L. & Pollard, T.D. Mechanism of interaction of Acanthamoeba actophorin (ADF/cofilin) with actin filaments. J. Biol. Chem. 274, 15538–15546 (1999).

    Article  CAS  Google Scholar 

  14. McGough, A. & Chiu, W. ADF/Cofilin weakens lateral contacts in the actin filament. J. Mol. Biol. 291, 513–519 (1999).

    Article  CAS  Google Scholar 

  15. Carlier, M-F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322 ( 1997).

    Article  CAS  Google Scholar 

  16. Ichetovkin, I., Han, J., Pang, K.M., Knecht, D.A. & Condeelis, J.S. Actin filaments are severed by both native and recombinant Dictyostelium cofilin but to different extents. Cell Motil. Cytoskel. 45, 293–306 ( 2000).

    Article  CAS  Google Scholar 

  17. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771– 781 (1997).

    Article  CAS  Google Scholar 

  18. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805– 809 (1998).

    Article  CAS  Google Scholar 

  19. Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809– 812 (1998).

    Article  CAS  Google Scholar 

  20. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279 , 509–514 (1998).

    Article  CAS  Google Scholar 

  21. Meberg, P.J., Ono, S., Minamide, L.S., Takahashi, M. & Bamburg, J.R. Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. Cell Motil. Cytoskel. 39, 172–190 (1998).

    Article  CAS  Google Scholar 

  22. Nishida, E., Iida, K., Yonezawa, N., Koyasu, I. & Sakai, H. Cofilin is a component of intranuclear and cytoplasmic rods induced in cultured cells. Proc. Natl Acad. Sci. USA 84, 5262–5266 (1987).

    Article  CAS  Google Scholar 

  23. Bershadsky, A.D., Gelfand, V.I., Svitkina, T.M. & Tint, I.S. Destruction of microfilament bundles in mouse embryo fibroblasts treated with inhibitors of energy metabolism. Exp. Cell Res. 127 , 421–429 (1980).

    Article  CAS  Google Scholar 

  24. Devineni, N. et al. A quantitative analysis of G-actin binding proteins and the G-actin pool in developing chick brain. Brain Res. 823, 129–140 (1999).

    Article  CAS  Google Scholar 

  25. Morgan, T.E., Lockerbie, R.O., Minamide, L.S., Browning, M.D. & Bamburg, J.R. Isolation and characterization of a regulated form of actin depolymerizing factor. J. Cell Biol. 122, 623–633 ( 1993).

    Article  CAS  Google Scholar 

  26. Rao, A., Kim, E., Shang, M. & Craig, A.M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci. 18, 1217–1229 (1998).

    Article  CAS  Google Scholar 

  27. Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

  28. Coyle, J.T. & Puttfarcken, P. Oxidative stress, glutamate and neurodegenerative disorders. Science 262, 689–695 (1993).

    Article  CAS  Google Scholar 

  29. Bolanos, J.P. et al. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem. 68, 2227–2240 ( 1997).

    Article  CAS  Google Scholar 

  30. Meberg, P.J. & Bamburg, J.R. Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor. J. Neurosci. 20, 2459–2469 ( 2000).

    Article  CAS  Google Scholar 

  31. Grøndahl, T.Ø., Hablitz, J.J. & Langmoen, I.A. Depletion of intracellular Ca2+ stores or lowering extracellular calcium alters intracellular Ca2+ changes during cerebral ischemia. Brain Res. 796, 125–131 (1998).

    Article  Google Scholar 

  32. Berlett, B.B. & Stadtman, E.R. Protein oxidation in aging, disease and oxidative stress. J. Biol. Chem. 272, 20313–20316 (1997).

    Article  CAS  Google Scholar 

  33. Ben-Yoseph, O., Boxer, P.A. & Ross, B.D. Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress. J. Neurochem. 66, 2329 –2337 (1996).

    Article  CAS  Google Scholar 

  34. Fukui, Y. & Katsumaru, H. Nuclear actin bundles in Amoeba , Dictyostelium and human HeLa cells induced by dimethyl sulfoxide . Exp. Cell Res. 120, 452– 455 (1979).

    Article  Google Scholar 

  35. Kuhn, T.B., Brown, M.D., Wilcox, C.L., Raper, J.A. & Bamburg, J.R. Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1. J. Neurosci. 19, 1965–1975 (1999).

    Article  CAS  Google Scholar 

  36. Velasco, M.E., Smith, M.A., Siedlak, S.L., Nunomura, A. & Perry, G. Striation is the characteristic neuritic abnormality in Alzheimer disease. Brain Res. 813, 329–333 (1998).

    Article  CAS  Google Scholar 

  37. Hawkins, M., Pope, B., Maciver, S.K. & Weeds, A.G. The interaction of human actin depolymerizing factor with actin is pH regulated. Biochemistry 32, 9985–9993 (1993).

    Article  CAS  Google Scholar 

  38. Nishida, E. Opposite effects of cofilin and profilin from porcine brain on rate of exchange of actin-bound adenosine 5′-triphosphate. Biochemistry 24, 1160–1164 (1985).

    Article  CAS  Google Scholar 

  39. Chen, H., Bernstein, B.W. & Bamburg, J.R. Regulating actin filament dynamics in vivo. Trends Biochem. Sci. 25, 19–23 (2000).

    Article  CAS  Google Scholar 

  40. Kim, S-Y., Grant, P., Lee, J-H., Pant, H.C. & Steinert, P.M. Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer's disease. J. Biol. Chem. 274, 30715–30721 (1999).

    Google Scholar 

  41. Multhaup, G. et al. Reactive oxygen species and Alzheimer's disease. Biochem. Pharmacol. 54, 533–539 (1997).

    Article  CAS  Google Scholar 

  42. Maciver, S.K. & Harrington, C.R. Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies . Neuroreport 6, 1985–1988 (1995).

    Article  CAS  Google Scholar 

  43. Hirano, A. Hirano bodies and related neuronal inclusions. Neuropathol. Appl. Neurobiol. 20, 3–11 ( 1994).

    Article  CAS  Google Scholar 

  44. Feldman, M.L. & Peters, A. Intranuclear rods and sheets in rat cochlear nucleus. J. Neurol. 1, 109– 127 (1972).

    CAS  Google Scholar 

  45. Hsia, A.Y. et al. Plaque-independent disruption of neuronal circuits in Alzheimer's disease mouse models. Proc. Natl Acad. Sci. USA 96, 3228–3233 (1999).

    Article  CAS  Google Scholar 

  46. Behl, C., Davis, J.B., Lesley, R. & Schubart, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827 (1994).

    Article  CAS  Google Scholar 

  47. Bartlett, W.P. & Banker, G.A. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J. Neurosci. 4, 1944–1953 (1984).

    Article  CAS  Google Scholar 

  48. Mattson, M.P. & Kater, S.B. Isolated hippocampal neurons in cryopreserved long-term cultures: development of neuroarchitecture and sensitivity to NMDA. Int. J. Dev. Neurosci. 6, 439– 452 (1988).

    Article  CAS  Google Scholar 

  49. Abe, H., Endo, T., Yamamoto, K. & Obinata, T. Sequence of cDNAs encoding actin depolymerizing factor and cofilin of embryonic chicken skeletal muscle: two functionally distinct actin-regulatory proteins exhibit high structural homology. Biochemistry 29, 7420– 7425 (1990).

    Article  CAS  Google Scholar 

  50. Rudelli, R.D., Ambler, M.W. & Wisniewski, H.M. Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon. Acta Neuropathol. 64, 273–281 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of General Medical Sciences, NIH (GM35126 and GM54004), the National Science Foundation (DBI-9531511), and the American Paralysis Association (BB2-9601) for supporting this work. We thank B. Bernstein, B. Molitoris and D. Cleveland for valuable discussions, J. Sneider for technical assistance, and W. M. Frederick for assistance with computer graphics. We are greatly indebted to E. Masliah and M. Mallory for the human brain sections and technical assistance on staining. Part of this work was done during a sabbatical leave (J.R.B.) from Colorado State University. We thank D. Cleveland for his generous hospitality at the Ludwig Institute for Cancer Research, University of California San Diego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Bamburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minamide, L., Striegl, A., Boyle, J. et al. Neurodegenerative stimuli induce persistent ADF/cofilin–actin rods that disrupt distal neurite function. Nat Cell Biol 2, 628–636 (2000). https://doi.org/10.1038/35023579

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing