Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Grapes checkpoint coordinates nuclear envelope breakdown and chromosome condensation

Abstract

Mutations in the embryonic Drosophila Grapes/Chk1 checkpoint result in an abbreviated interphase, chromosome condensation defects and metaphase delays. To clarify the relationship between these phenotypes, we simultaneously timed multiple nuclear and cytoplasmic events in mutant grp-derived embryos. These studies support a model in which grp disrupts an S-phase checkpoint, which results in progression into metaphase with incompletely replicated chromosomes. We also show that chromosome condensation is independent of the state of DNA replication in the early embryo. Therefore, grp condensation defects are not a direct consequence of entering metaphase with incompletely replicated chromosomes. Rather, initiation of chromosome condensation (ICC) occurs at the normal time in grp-derived embryos, but the shortened interval between ICC and metaphase does not provide sufficient time to complete condensation. Our results suggest that these condensation defects, rather than incomplete DNA replication, are responsible for the extensive metaphase delays observed in grp-derived embryos. This analysis provides an example of how the loss of a checkpoint can disrupt the timing of multiple events not directly monitored by that checkpoint. These results are likely to apply to vertebrate cells and suggest new strategies for destroying checkpoint-compromised cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timing of the nuclear cycle.
Figure 2: The state of chromosome condensation during the cortical cycles of normal and grp-derived embryos.
Figure 3: Comparison of chromosome condensation in wild-type, grp-derived, and drug-treated embryos.
Figure 4: grp-derived embryos are sensitive to chromosome rearrangements.
Figure 5: Model explaining grp-induced metaphase delay.

Similar content being viewed by others

References

  1. Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    Article  CAS  Google Scholar 

  2. Weinert, T. A. & Hartwell, L. H. The RAD 9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317–322 (1988).

    Article  CAS  Google Scholar 

  3. Fogarty, P. et al. The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr. Biol. 7, 418–426 (1997).

    Article  CAS  Google Scholar 

  4. Sibon, O. C., Stevenson, V. A. & Theurkauf, W. E. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388, 93–97 (1997).

    Article  CAS  Google Scholar 

  5. Rhind, N., Furnari, B. & Russell, P. Cdc 2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11, 504–511 (1997).

    Article  CAS  Google Scholar 

  6. Furnari, B., Rhind, N. & Russell, P. Cdc 25 mitotic inducer targeted by chk 1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997).

    Article  CAS  Google Scholar 

  7. Sanchez, Y. et al. Conservation of the Chk 1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc 25. Science 277, 1497–1501 (1997).

    Article  CAS  Google Scholar 

  8. Peng, C. Y. et al. Mitotic and G 2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25 C on serine-216. Science 277, 1501–1505 (1997).

    Article  CAS  Google Scholar 

  9. Walworth, N. C. & Bernards, R. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356 (1996).

    Article  CAS  Google Scholar 

  10. Walworth, N., Davey, S. & Beach, D. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363, 368–371 (1993).

    Article  CAS  Google Scholar 

  11. O'Connell, M. J., Raleigh, J. M., Verkade, H. M. & Nurse, P. Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc 2 by Y15 phosphorylation. EMBO J. 16, 545–554 (1997).

    Article  CAS  Google Scholar 

  12. Chen, L., Liu, T. H. & Walworth, N. C. Association of Chk1 with 14-3-3 proteins is stimulated by DNA damage. Genes Dev. 13, 675–685 (1999).

    Article  CAS  Google Scholar 

  13. Lopez-Girona, A., Furnari, B., Mondesert, O. & Russell, P. Nuclear localization of Cdc 25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172–175 (1999).

    Article  CAS  Google Scholar 

  14. Zeng, Y. et al. Replication checkpoint requires phosphorylation of the phosphatase Cdc 25 by Cds 1 or Chk1. Nature 395, 507–510 (1998).

    Article  CAS  Google Scholar 

  15. Kumagai, A., Yakowec, P. S. & Dunphy, W. G. 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Mol. Biol. Cell 9, 345–354 (1998).

    Article  CAS  Google Scholar 

  16. Pines, J. Cell cycle. Checkpoint on the nuclear frontier. Nature 397, 104–105 (1999).

    Article  CAS  Google Scholar 

  17. Yang, J. et al. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 12, 2131–2143 (1998).

    Article  CAS  Google Scholar 

  18. Huang, J. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999).

    Article  CAS  Google Scholar 

  19. Fogarty, P., Kalpin, R. F. & Sullivan, W. The Drosophila maternal-effect mutation grapes causes a metaphase arrest at nuclear cycle 13. Development 120, 2131–2142 (1994).

    CAS  Google Scholar 

  20. Su, T. T., Campbell, S. D. & O'Farrell, P. H. Drosophila grapes/CHK1 mutants are defective in cyclin proteolysis and coordination of mitotic events. Curr. Biol. 9, 919–922 (1999).

    Article  CAS  Google Scholar 

  21. Raff, J. W. & Glover, D. M. Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J. Cell Biol. 107, 2009–2019 (1988).

    Article  CAS  Google Scholar 

  22. Debec, A. et al. Live analysis of free centrosomes in normal and aphidicolin-treated Drosophila embryos. J. Cell Biol. 134, 103–115 (1996).

    Article  CAS  Google Scholar 

  23. Clarkson, M. & Saint, R. A His2AvDGFP fusion gene complements a lethal His2AvD mutant allele and provides an in vivo marker for Drosophila chromosome behavior. DNA Cell. Biol. 18, 457–462 (1999).

    Article  CAS  Google Scholar 

  24. Buchenau, P., Saumweber, H. & Arndt-Jovin, D. J. Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J. Cell Sci. 104, 1175–1185 (1993).

    CAS  Google Scholar 

  25. Roberge, M., Th'ng, J., Hamaguchi, J. & Bradbury, E. M. The topoisomerase II inhibitor VM-26 induces marked changes in histone H1 kinase activity, histones H1 and H3 phosphorylation, and chromosome condensation in G2 phase and mitotic BHK cells. J. Cell Biol. 111, 1753–1762 (1990).

    Article  CAS  Google Scholar 

  26. Newport, J. & Spann, T. Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes. Cell 48, 219–230 (1987).

    Article  CAS  Google Scholar 

  27. Novitsky, E., Grace, D. & Strommen, C. The entire compound autosomes of Drosophila melanogaster. Genetics 98, 257–273 (1981).

    Google Scholar 

  28. Sullivan, W., Daily, D. R., Fogarty, P., Yook, K. J. & Pimpinelli, S. Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo. Mol. Biol. Cell 4, 885–896 (1993).

    Article  CAS  Google Scholar 

  29. Booher, R. N., Alfa, C. E., Hyams, J. S. & Beach, D. H. The fission yeast cdc2/cdc13/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58, 485–497 (1989).

    Article  CAS  Google Scholar 

  30. Edgar, B. A., Sprenger, F., Duronio, R. J., Leopold, P. & O'Farrell, P. H. Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev. 8, 440–452 (1994).

    Article  CAS  Google Scholar 

  31. Sibon, O. C., Kelkar, A., Lemstra, W. & Theurkauf, W. E. DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nature Cell Biol. 2, 90–95 (2000).

    Article  CAS  Google Scholar 

  32. Rudner, A. D. & Murray, A. W. The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8, 773–780 (1996).

    Article  CAS  Google Scholar 

  33. Megraw, T. L., Li, K., Kao, L. R. & Kaufman, T. C. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829–2839 (1999).

    CAS  Google Scholar 

  34. de Saint Phalle, B. & Sullivan, W. Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. J. Cell Biol. 141, 1383–1391 (1998).

    Article  CAS  Google Scholar 

  35. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  36. Zakian, V. A. ATM-related genes: what do they tell us about functions of the human gene? Cell 82, 685–687 (1995).

    Article  CAS  Google Scholar 

  37. Paulovich, A. G., Toczyski, D. P. & Hartwell, L. H. When checkpoints fail. Cell 88, 315–321 (1997).

    Article  CAS  Google Scholar 

  38. Sullivan, W., Fogarty, P. & Theurkauf, W. Mutations affecting the cytoskeletal organization of syncytial Drosophila embryos. Development 118, 1245–1254 (1993).

    CAS  Google Scholar 

  39. Francis-Lang, H., Minden, J., Sullivan, W. & Oegema, K. in Confocal Microscopy Methods and Protocols (ed. Paddock, S. W.) (Humana Press, Totowa, 1999).

    Google Scholar 

Download references

Acknowledgements

We thank J. Sisson, T. Su and S. Campbell for their critical reading of the manuscript and helpful discussions. We thank Tao-Shih Hsieh for providing VM26 and Arshad Desai for labelled histones. This work was supported by grants to W.S. from the National Institutes of Health (5R01 GM 46409-08), and to R.S. by the Australian Research Council (A09601106). Support for K.Y. was provided by a University of California Biotechnology Training Grant and an NIH Training grant (1T32GM0864601A1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, K., Saint, R. & Sullivan, W. The Grapes checkpoint coordinates nuclear envelope breakdown and chromosome condensation. Nat Cell Biol 2, 609–615 (2000). https://doi.org/10.1038/35023555

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing