Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane

Abstract

Membrane cholesterol–sphingolipid ‘rafts’, which are characterized by their insolubility in the non-ionic detergent Triton X-100 in the cold, have been implicated in the sorting of certain membrane proteins, such as placental alkaline phosphatase (PLAP), to the apical plasma membrane domain of epithelial cells. Here we show that prominin, an apically sorted pentaspan membrane protein, becomes associated in the trans-Golgi network with a lipid raft that is soluble in Triton X-100 but insoluble in another non-ionic detergent, Lubrol WX. At the cell surface, prominin remains insoluble in Lubrol WX and is selectively associated with microvilli, being largely segregated from the membrane subdomains containing PLAP. Cholesterol depletion results in the loss of prominin's microvillus-specific localization but does not lead to its complete intermixing with PLAP. We propose the coexistence within a membrane domain, such as the apical plasma membrane, of different cholesterol-based lipid rafts, which underlie the generation and maintenance of membrane subdomains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prominin is soluble in Triton X-100 but insoluble in Lubrol WX.
Figure 2: Prominin's insolubility in Lubrol WX is not due to linkage to the actin cytoskeleton or other protein–protein interactions.
Figure 3: Prominin's insolubility in Lubrol WX reflects its association with detergent-resistant complexes.
Figure 4: Cholesterol depletion affects the Lubrol WX-resistant complexes containing prominin.
Figure 5: Clustering of either cholesterol or prominin increases the size of the Lubrol WX-insoluble, prominin-containing complexes.
Figure 6: Prominin becomes insoluble in Lubrol WX within the trans-Golgi/TGN, and the size of the detergent-resistant complexes increases upon exit from the TGN.
Figure 7: The characteristic microvillus-specific pattern of prominin's cell-surface distribution depends on cholesterol.
Figure 8: PLAP does not co-localize with prominin on microvilli and does not redistribute like prominin upon cholesterol depletion.
Figure 9: Formation of the Triton rafts and Lubrol rafts in the TGN and their transport to the planar and the microvillar subdomains of the apical plasma membrane, as revealed after cell lysis in Lubrol WX.

Similar content being viewed by others

References

  1. Rodriguez-Boulan, E. & Nelson, J. Morphogenesis of the polarized epithelial cell phenotype. Science 245 , 718–725 (1989).

    Article  CAS  Google Scholar 

  2. Simons, K. et al. Biogenesis of cell-surface polarity in epithelial cells and neurons . Cold Spring Harbor Symp. Quant. Biol. 57, 611–619 (1992).

    Article  CAS  Google Scholar 

  3. Kerjaschki, D., Noronha-Blob, L., Sacktor, B. & Farquhar, M.G. Microdomains of distinctive glycoprotein composition in the kidney proximal tubule brush border. J. Cell Biol. 98, 1505 –1513 (1984).

    Article  CAS  Google Scholar 

  4. Simons, K. & Ikonen, E. Functional rafts in cell membranes . Nature 387, 569–572 (1997).

    Article  CAS  Google Scholar 

  5. Harder, T. & Simons, K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol. 9, 534–542 (1997).

    Article  CAS  Google Scholar 

  6. Brown, D. A. & London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000).

    Article  CAS  Google Scholar 

  7. Bretscher, A., Reczek, D. & Berryman, M. Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. J. Cell Sci. 110, 3011– 3018 (1997).

    CAS  Google Scholar 

  8. Weigmann, A., Corbeil, D., Hellwig, A. & Huttner, W. B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl Acad. Sci. USA 94, 12425 –12430 (1997).

    Article  CAS  Google Scholar 

  9. Corbeil, D., Röper, K., Hannah, M. J., Hellwig, A. & Huttner, W. B. Selective localization of the polytopic membrane protein prominin in microvilli of epithelial cells - a combination of apical sorting and retention in plasma membrane protrusions . J. Cell Sci. 112, 1023– 1033 (1999).

    CAS  Google Scholar 

  10. Maw, M. A. et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum. Mol. Genet. 9, 27–34 (2000).

    Article  CAS  Google Scholar 

  11. Corbeil, D. et al. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J. Biol. Chem. 275, 5512–5520 (2000).

    Article  CAS  Google Scholar 

  12. Fiedler, K., Kobayashi, T., Kurzchalia, T. V. & Simons, K. Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32, 6365 –6373 (1993).

    Article  CAS  Google Scholar 

  13. Melkonian, K. A., Chu, T., Tortorella, L. B. & Brown, D. A. Characterization of proteins in detergent-resistant membrane complexes from Madin-Darby canine kidney epithelial cells. Biochemistry 34, 16167–16170 (1995).

    Article  Google Scholar 

  14. Umbreit, J. N. & Strominger, J. L. Relation of detergent HLB number to solubilization and stabilization of D-alanine carboxypeptidase from Bacillus subtilis membranes. Proc. Natl Acad. Sci. USA 70, 2997–3001 ( 1973).

    Article  CAS  Google Scholar 

  15. Miseta, A. et al. Effect of non-lytic concentrations of Brij series detergents on the metabolism-independent ion permeability properties of human erythrocytes . Biophys. J. 69, 2563– 2568 (1995).

    Article  CAS  Google Scholar 

  16. Kunimoto, M., Shibata, K. & Miura, T. Comparison of the cytoskeleton fractions of rat red blood cells prepared with non-ionic detergents. J. Biochem. (Tokyo) 105, 190–195 ( 1989).

    Article  CAS  Google Scholar 

  17. Fey, E. G., Wan, K. M. & Penman, S. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition . J. Cell Biol. 98, 1973– 1984 (1984).

    Article  CAS  Google Scholar 

  18. Ojakian, G. K. & Schwimmer, R. The polarized distribution of an apical cell surface glycoprotein is maintained by interactions with the cytoskeleton of Madin-Darby canine kidney cells. J. Cell Biol. 107, 2377–2387 ( 1988).

    Article  CAS  Google Scholar 

  19. Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533– 544 (1992).

    Article  CAS  Google Scholar 

  20. Schroeder, R., London, E. & Brown, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl Acad. Sci. USA 91, 12130– 12140 (1994).

    Article  CAS  Google Scholar 

  21. Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V. & Simons, K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12, 1597–1605 (1993).

    Article  CAS  Google Scholar 

  22. Sargiacomo, M., Sudol, M., Tang, Z. & Lisanti, M. P. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 122, 789–807 (1993).

    Article  CAS  Google Scholar 

  23. Scheiffele, P., Roth, M. G. & Simons, K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508 (1997).

    Article  CAS  Google Scholar 

  24. Klein, U., Gimpl, G. & Fahrenholz, F. Alteration of the myometrial plasma membrane cholesterol content with beta cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34, 13784– 13793 (1995).

    Article  CAS  Google Scholar 

  25. Cerneus, D. P., Ueffing, E., Posthuma, G., Strous, G. J. & van der Ende, A. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol . J. Biol. Chem. 268, 3150– 3155 (1993).

    CAS  Google Scholar 

  26. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929– 942 (1998).

    Article  CAS  Google Scholar 

  27. Thiele, C., Hannah, M. J., Fahrenholz, F. & Huttner, W. B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature Cell Biol. 2, 42– 49 (2000).

    Article  CAS  Google Scholar 

  28. Bretscher, M. S. & Munro, S. Cholesterol and the Golgi apparatus. Science 261, 1280– 1281 (1993).

    Article  CAS  Google Scholar 

  29. Keller, P. & Simons, K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol. 140, 1357–1367 (1998).

    Article  CAS  Google Scholar 

  30. Baeuerle, P. A. & Huttner, W. B. Tyrosine sulfation is a trans-Golgi-specific protein modification. J. Cell Biol. 105, 2655–2664 (1987).

    Article  CAS  Google Scholar 

  31. Huttner, W. B. et al. Biogenesis of neurosecretory vesicles. Cold Spring Harbor Symp. Quant. Biol. 60, 315– 327 (1995).

    Article  CAS  Google Scholar 

  32. Tooze, S. A. & Huttner, W. B. Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell 60, 837–847 (1990).

    Article  CAS  Google Scholar 

  33. Francis, S.A. et al. Rapid reduction of MDCK cell cholesterol by methyl-beta-cyclodextrin alters steady state transepithelial electrical resistance. Eur. J. Cell Biol. 78, 473–484 (1999).

    Article  CAS  Google Scholar 

  34. Brown, D. A., Crise, B. & Rose, J. K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245, 1499–1501 (1989).

    Article  CAS  Google Scholar 

  35. Danielsen, M. E. & van Deurs, B. A transferrin-like GPI-linked iron-binding protein in detergent-insoluble noncaveolar microdomains at the apical surface of fetal intestinal epithelial cells. J. Cell Biol. 131, 939–950 (1995).

    Article  CAS  Google Scholar 

  36. Verkade, P., Harder, T., Lafont, F. & Simons, K. Induction of caveolae in the apical plasma membrane of Madin-Darby canine kidney cells. J. Cell Biol. 148, 727–739 (2000).

    Article  CAS  Google Scholar 

  37. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  Google Scholar 

  38. Ilangumaran, S. & Hoessli, D. C. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335, 433 –440 (1998).

    Article  CAS  Google Scholar 

  39. Madore, N. et al. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 18, 6917–6926 (1999).

    Article  CAS  Google Scholar 

  40. Breckenridge, W. C., Morgan, I. G., Zanetta, J. P. & Vincendon, G. Adult rat brain synaptic vesicles. II. Lipid composition. Biochim. Biophys. Acta 320, 681–686 (1973).

    Article  CAS  Google Scholar 

  41. Breckenridge, W. C., Gombos, G. & Morgan, I. G. The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim. Biophys. Acta 266, 695–707 (1972).

    Article  CAS  Google Scholar 

  42. Costa de Beauregard, M-A., Pringault, E., Robine, S. & Louvard, D. Suppression of villin expression by antisense RNA impairs brush border assembly in polarized epithelial intestinal cells. EMBO J. 14 , 409–421 (1995).

    Article  CAS  Google Scholar 

  43. Lipardi, C., Nitsch, L. & Zurzolo, C. Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting . Mol. Biol. Cell 11, 531– 542 (2000).

    Article  CAS  Google Scholar 

  44. Gorman, C., Howard, B. & Reeves, R. Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 11, 7631–7648 (1983).

    Article  CAS  Google Scholar 

  45. Bligh, E. G. & Dyer, W. J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

  46. Osborn, M., Johnsson, N., Wehland, J. & Weber, K. The submembraneous location of p11 and its interaction with the p36 substrate of pp60 src kinase in situ. Exp. Cell Res. 175, 81–96 (1988).

    Article  CAS  Google Scholar 

  47. Algrain, M., Turunen, O., Vaheri, A., Louvard, D. & Arpin, M. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J. Cell Biol. 120, 129–139 (1993).

    Article  CAS  Google Scholar 

  48. Surfactants, Microbiocides and Dispersants: Handbook of Physical Properties (Rohm and Haas Co., PA, 1986 ).

  49. Aldrich Catalogue (1999–2000).

  50. Grant, D. A. & Hjerten, S. Some observations on the choice of detergent for solubilization of the human erythrocyte membrane. Biochem. J. 164, 465–468 (1977).

    Article  CAS  Google Scholar 

  51. Van Ede, J., Nijmeijer, J. R., Welling-Wester, S., Orvell, C. & Welling, G. W. Comparison of non-ionic detergents for extraction and ion-exchange high-performance liquid chromatography of Sendai virus integral membrane proteins. J. Chromatogr. 476, 319–327 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Brown for the PLAP-transfected MDCK cells, D. Louvard for the villin-antisense Caco2 cells, D. Buck for the antibody against human prominin (AC133 antigen), C. Thiele for [3H]photo-cholesterol, 10-azistearic acid, cholesterol–mβCD complex and delipidated sera, A. Hellwig for electron microscopy, and M.J. Hannah for help with confocal microscopy. K.R. was the recipient of a fellowship from the Studienstiftung des Deutschen Volkes. W.B.H. was supported by grants from the DFG (SFB 352, C1), the EC (ERB-FMRX-CT96-0023 and ERBBIO4CT960058), the German-Israeli Foundation for Scientific Research and Development, and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieland B. Huttner.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röper, K., Corbeil, D. & Huttner, W. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2, 582–592 (2000). https://doi.org/10.1038/35023524

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing