Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization

Abstract

Phosphatidylinositol bisphosphate (PIP2) directly regulates functions as diverse as the organization of the cytoskeleton, vesicular transport and ion channel activity. It is not known, however, whether dynamic changes in PIP2 levels have a regulatory role of physiological importance in such functions. Here, we show in both native cardiac cells and heterologous expression systems that receptor-regulated PIP2 hydrolysis results in desensitization of a GTP-binding protein-stimulated potassium current. Two receptor-regulated pathways in the plasma membrane cross-talk at the level of these channels to modulate potassium currents. One pathway signals through the βγ subunits of G proteins, which bind directly to the channel. Gβγ subunits stabilize interactions with PIP2 and lead to persistent channel activation. The second pathway activates phospholipase C (PLC) which hydrolyses PIP2 and limits Gβγ-stimulated activity. Our results provide evidence that PIP2 itself is a receptor-regulated second messenger, downregulation of which accounts for a new form of desensitization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blocking receptor, Gqα or PLC attenuates K+ current desensitization in rat atrial myocytes.
Figure 2: PLC activation via M1 receptor stimulation in COS-1 cells results in rapidly desensitizing GIRK currents.
Figure 3: PLC activation via M1 receptor stimulation in COS-1 cells results in PIP2 hydrolysis.
Figure 4: M1 receptor signalling causes inhibition of GIRK currents in Xenopus laevis oocytes.
Figure 5: Hydrolysis of PIP2 through EGF receptor signalling causes inhibition of M2-stimulated GIRK currents in Xenopus oocytes.
Figure 6: An increase in the strength of GIRK4* channel- PIP2 interactions reduces agonist-induced current inhibition in Xenopus oocytes.
Figure 7: A decrease in the strength of IRK1 channel-PIP2 interactions confers agonist-induced current inhibition in Xenopus oocytes.

Similar content being viewed by others

References

  1. Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364, 802–806 (1993).

    Article  CAS  Google Scholar 

  2. Dascal, N., Schreibmayer, W., Lim, N. F., Wang, W., Chavkin, C., DiMagno, L., Labarca, C., Kieffer, B. L., Caveriaux-Ruff, C., Trollinger, D., Lester, H. A. & Davidson, N. Atrial G protein-activated K+ channel: Expression cloning and molecular properties. Proc. Natl Acad. Sci. USA 90, 10235–10239 (1993).

    Article  CAS  Google Scholar 

  3. Krapivinsky, G., Gordon, E. A., Wickman, K., Velimirovic, B., Krapivinsky, L. & Clapham, D. E. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374, 135–141 (1995).

    Article  CAS  Google Scholar 

  4. Caulfield, M. P. & Birdsall, N. J. M. Classification of muscarinic acetylcholine receptors. International Union of Pharmacology. XVII. Pharmacol. Rev. 50, 279–290 (1998).

    CAS  PubMed  Google Scholar 

  5. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J. & Clapham, D. E. The βγ subunits of GTP-binding proteins activate the muscarinic K channel in heart. Nature 325, 321–326 (1987).

    Article  CAS  Google Scholar 

  6. Krapivinsky, G., Krapivinsky, L., Wickman, K. & Clapham, D. E. Gβγ binds directly to the G protein-gated K+ channel, IKACh. J. Biol. Chem. 270, 29059–29062 (1995).

    Article  CAS  Google Scholar 

  7. Yamada, M., Inanobe, A. & Kurachi, Y. G protein regulation of potassium ion channels. Pharmacol. Rev. 50, 723–757 (1998).

    CAS  PubMed  Google Scholar 

  8. Kurachi, Y., Nakajima, T. & Sugimoto, T. Short-term desensitization of muscarinic K+ channel current in isolated atrial myocytes and possible role of GTP-binding proteins. Pflügers Arch. 410, 227–233 (1987).

    Article  CAS  Google Scholar 

  9. Wu, D., Jiang, H., Katz, A. & Simon, M. I. Identification of critical regions on phospholipase C-beta 1 required for activation by G-proteins. J. Biol. Chem. 268, 3704–3709 (1993).

    CAS  PubMed  Google Scholar 

  10. Stauffer, T. P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346 (1998).

    Article  CAS  Google Scholar 

  11. Varnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: Calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143, 501–510 (1998).

    Article  CAS  Google Scholar 

  12. Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H. & Masamitsu I. Spatiotemporal dynamics of inositol 1,4,5-triphosphate that underlies complex Ca2+ mobilization patterns. Science 284, 1527–1530 (1999).

    Article  CAS  Google Scholar 

  13. Yim, D. L., Opresko, L. L., Wiley, H. S. & Nuccitelli, R. Highly polarized EGF receptor tyrosine kinase activity initiates egg activation in Xenopus. Dev. Biol. 162, 41–55 (1994).

    Article  CAS  Google Scholar 

  14. Hilgemann, D. W. Cytoplasmic ATP-dependent regulation of ion transporters and channels: mechanisms and messengers. Annu. Rev. Physiol. 59, 193–220 (1997).

    Article  CAS  Google Scholar 

  15. Sui, J. L., Petit-Jacques, J. & Logothetis, D. E. Effect of phosphatidylinositol phosphates on the gating of G-protein-activated K+ channels. Curr. Topics Membranes 46, 337–354 (1999).

    Article  CAS  Google Scholar 

  16. Hilgemann, D. W. & Ball, R. Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273, 956–959 (1996).

    Article  CAS  Google Scholar 

  17. Fan, Z. & Makielski, J. C. Anionic phospholipids activate ATP-sensitive potassium channels. J. Biol. Chem. 272, 5388–5395 (1997).

    Article  CAS  Google Scholar 

  18. Baukrowitz, T., Schulte, U., Oliver, D., Herlitze, S., Krauter, T., Tucker, S. J., Ruppersberg, J. P. & Fakler, B. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282, 1141–1144 (1998).

    Article  CAS  Google Scholar 

  19. Shyng, S.-L. & Nichols, C. G. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282, 1138–1141 (1998).

    Article  CAS  Google Scholar 

  20. Huang, C.-L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    Article  CAS  Google Scholar 

  21. Sui, J.-L., Petit-Jacques & Logothetis, D. E. Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc. Natl Acad. Sci. USA 95, 1307–1312 (1998).

    Article  CAS  Google Scholar 

  22. Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D. E. Specific PIP2 interactions with inwardly rectifying K+ channels determine distinct activation mechanisms. Nature Cell Biology 1, 183–188 (1999).

    Article  CAS  Google Scholar 

  23. Liou, H. H., Zhou, S. S. & Huang, C. L. Regulation of ROMK 1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. Proc. Natl Acad. Sci. USA 96, 5820–5825 (1999).

    Article  CAS  Google Scholar 

  24. Sui, J. L., Chan, K. W. & Logothetis, D. E. Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J. Gen. Physiol. 108, 381–391 (1996).

    Article  CAS  Google Scholar 

  25. Petit-Jacques, J., Sui, J.-L. & Logothetis, D. E. Synergistic activation of GIRK channels by Na+, Mg2+ and Gβγ subunits. J. Gen. Physiol. 114, 673–684 (1999).

    Article  CAS  Google Scholar 

  26. Ho, I. H. M. & Murrell-Lagnado, R. D. Molecular mechanism for sodium dependent activation of G protein-gated K+ channels. J. Physiol. 520, 645–651 (1999).

    Article  CAS  Google Scholar 

  27. Logothetis, D. E. & Zhang, H. Gating of G protein-sensitive inwardly rectifying K+ channels through phosphatidylinositol 4,5-bisphosphate. J. Physiol. 520, 630 (1999).

    Article  CAS  Google Scholar 

  28. Xie L.-H., Horie, M. & Takano M. Phospholipase C-linked receptors regulate the ATP-sensitive potassium channel by means of phosphatidylinositol 4,5-bisphosphate metabolism. Proc. Natl Acad. Sci. USA 96, 15292–15297 (1999).

    Article  Google Scholar 

  29. Chuang, H.-H., Yu, M., Jan, Y. N. & Jan, L. Y. Evidence that the nucleotide exchange and hydrolysis cycle of G proteins causes acute desensitization of G-protein gated inward rectifier K+ channels. Proc. Natl Acad. Sci. USA 95, 11727–11732 (1998).

    Article  CAS  Google Scholar 

  30. Kim, D. & Pleumsamran, A. Cytoplasmic unsaturated free fatty acids inhibit ATP-dependent gating of the G protein-gated K+ channel. J. Gen. Physiol. 115, 287–304 (2000).

    Article  CAS  Google Scholar 

  31. Liman, E. R., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9, 861–871 (1992).

    Article  CAS  Google Scholar 

  32. Muir, T. M., Hair, J., Inglis, G. C., Dow, J. W., Lindop, G. B. M. & Leckie, B. J. Dexamethasone-induced differentiation of atrial myocytes in culture. Am. J. Physiol. 263, H 722–H 729 (1992).

  33. Vivaudou, M., Chan, K. W., Sui, J. L. Jan L.Y., Reuveny, E. & Logothetis, D. E. Probing the G-protein regulation of GIRK 1 and GIRK 4, the two subunits of the KACh channel, using functional homomeric mutants. J. Biol. Chem. 272, 31553–31560 (1997).

    Article  CAS  Google Scholar 

  34. Petersen, C. C. & Berridge, M. J. The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes. J. Biol. Chem. 269, 32246–32253 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to X. Yan for preparation of oocytes, S. Henderson for help with the confocal experiments, and I. Wolf for peptide synthesis. We thank H. S. Wiley (University of Utah), X-Y. Huang (Cornell University Medical College) and T. Meyer (Duke University) for their kind gifts of EGF receptor, M1 receptor and GFP–PH cDNAs, respectively. We also thank R. Anderson, D. Clapham, M. Greenberg, R. Iyengar, R. Margolskee, S. Sealfon, M. Ming Zhou and members of the Logothetis lab for critical comments on the manuscript. This work was supported by grants to D.E.L. from the NIH (HL54185 and HL59949). T.M. was supported by NIH Training Grant DK 07757 and a Charles H. Revson fellowship.

Correspondence and requests for materials should be addressed to D.E.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diomedes E. Logothetis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobrinsky, E., Mirshahi, T., Zhang, H. et al. Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization . Nat Cell Biol 2, 507–514 (2000). https://doi.org/10.1038/35019544

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing