Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein

Abstract

The cytosolic ATPase N-ethylmaleimide-sensitive fusion protein (NSF) disassembles complexes of membrane-bound proteins known as SNAREs, an activity essential for vesicular trafficking. The amino-terminal domain of NSF (NSF-N) is required for the interaction of NSF with the SNARE complex through the adaptor protein α-SNAP. The crystal structure of NSF-N reveals two subdomains linked by a single stretch of polypeptide. A polar interface between the two subdomains indicates that they can move with respect to one another during the catalytic cycle of NSF. Structure-based sequence alignments indicate that in addition to NSF orthologues, the p97 family of ATPases contain an amino-terminal domain of similar structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of NSF-N.
Figure 2: Structure-based sequence alignment of NSF-N and related domains.
Figure 3: Stucture of the interface between the N- and C-terminal subdomains.
Figure 4: Structure of the NSF-N trimer found in the crystallographic asymmetric unit.

Similar content being viewed by others

References

  1. Woodman, P. G. The roles of NSF, SNAPs and SNAREs during membrane fusion. Biochim. Biophys. Acta 1357, 155–172 (1997).

    Article  CAS  Google Scholar 

  2. Burgoyne, R. D. & Morgan, A. Analysis of regulated exocytosis in adrenal chromaffin cells: insights into NSF/SNAP/SNARE function. Bioessays 20, 328–335 (1998).

    Article  CAS  Google Scholar 

  3. Wilson, D. W., Whiteheart, S. W., Wiedmann, M., Brunner, M. & Rothman, J. E. A multisubunit particle implicated in membrane fusion. J. Cell Biol. 117, 531–538 (1992).

    Article  CAS  Google Scholar 

  4. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  Google Scholar 

  5. Banerjee, A., Barry, V. A., DasGupta, B. R. & Martin, T. F. J. N-ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem. 271, 20223–20226 (1996).

    Article  CAS  Google Scholar 

  6. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).

    Article  CAS  Google Scholar 

  7. Nichols, B. J., Ungermann, C., Pelham, H. R. B., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199–202 (1997).

    Article  CAS  Google Scholar 

  8. Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalyzed by the ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136, 307–317 (1997).

    Article  CAS  Google Scholar 

  9. Ungermann, C., Nichols, B. J., Pelham, H. R. B. & Wickner, W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J. Cell Biol. 140, 61–69 (1998).

    Article  CAS  Google Scholar 

  10. Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543–548 (1998).

    Article  CAS  Google Scholar 

  11. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 (1998).

    Article  CAS  Google Scholar 

  12. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21, 99–110 (1998).

    Article  CAS  Google Scholar 

  13. Song, I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393–400 (1998).

    Article  CAS  Google Scholar 

  14. McDonald, P. H. et al. Identification of NSF as a β-arrestin1-binding protein. J. Biol. Chem. 274, 10677–10680 (1999).

    Article  CAS  Google Scholar 

  15. Wilson, D. W. et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355–359 (1989).

    Article  CAS  Google Scholar 

  16. Tagaya, M., Wilson, D. W., Brunner, M., Arango, N. & Rothman, J. E. Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J. Biol. Chem. 268, 2662–2666 (1993).

    CAS  PubMed  Google Scholar 

  17. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  18. Rabouille, C., Levine, T. P., Peters, J.-M. & Warren, G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905–914 (1995).

    Article  CAS  Google Scholar 

  19. Whiteheart, S. W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell. Biol. 126, 945–954 (1994).

    Article  CAS  Google Scholar 

  20. Nagiec, E. E., Bernstein, A. & Whiteheart, S. W. Each domain of the N-ethylmaleimide-sensitive fusion protein contributes to its transport activity. J. Biol. Chem. 270, 29182–29188 (1995).

    Article  CAS  Google Scholar 

  21. Matveeva, E. A., He, P. & Whiteheart, S. W. N-ethylmaleimide-sensitive fusion protein contains high and low affinity ATP-binding sites that are functionally distinct. J. Biol. Chem. 272, 26413–26418 (1997).

    Article  CAS  Google Scholar 

  22. Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998).

    Article  CAS  Google Scholar 

  23. Yu, R. C., Hanson, P. I., Jahn, R. & Brünger, A. T. Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nature Struct. Biol. 5, 803–811 (1998).

    Article  CAS  Google Scholar 

  24. Morgan, A., Dimaline, R. & Burgoyne, R. D. The ATPase activity of N-ethylmaleimide-sensitive fusion protein (NSF) is regulated by soluble NSF attachment proteins. J. Biol. Chem. 269, 29347–29350 (1994).

    CAS  PubMed  Google Scholar 

  25. Barnard, R. J. O., Morgan, A. & Burgoyne, R. D. Stimulation of NSF ATPase activity by α-SNAP is required for SNARE complex disassembly and exocytosis. J. Cell Biol. 139, 875–883 (1997).

    Article  CAS  Google Scholar 

  26. Matveeva, E. & Whiteheart, S. W. The effects of SNAP/SNARE complexes on the ATPase of NSF. FEBS Lett. 435, 211–214 (1998).

    Article  CAS  Google Scholar 

  27. Eakle, K. A., Bernstein, M. & Emr, S. D. Characterization of a component of the yeast secretion machinery: identification of the SEC18 gene product. Mol. Cell. Biol. 8, 4098–4109 (1988).

    Article  CAS  Google Scholar 

  28. Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  29. Castillo, R. M. et al. A six-stranded double-psi β barrel is shared by several protein superfamilies. Structure 7, 227–236 (1999).

    Article  CAS  Google Scholar 

  30. Pallanck, L. et al. Distinct roles for N-ethylmaleimide-sensitive fusion protein (NSF) suggested by the identification of a second Drosophila NSF homolog. J. Biol. Chem. 270, 18742–18744 (1995).

    Article  CAS  Google Scholar 

  31. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  32. Berchtold, H. et al. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365, 126–132 (1993).

    Article  CAS  Google Scholar 

  33. Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1, 35–50 (1993).

    Article  CAS  Google Scholar 

  34. Altschul, S. F. & Koonin, E. V. Iterated profile searches with PSI-BLAST — a tool for discovery in protein databases. Trends Biochem. Sci. 23, 444–447 (1998).

    Article  CAS  Google Scholar 

  35. Whiteheart, S. W. & Kubalek, E. W. SNAPs and NSF: general members of the fusion apparatus. Trends Cell Biol. 5, 64–68 (1995).

    Article  CAS  Google Scholar 

  36. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14, 2317–2325 (1995).

    Article  CAS  Google Scholar 

  37. Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).

    Article  CAS  Google Scholar 

  38. Hohl, T. M. et al. Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. Mol. Cell 2, 539–548 (1998).

    Article  CAS  Google Scholar 

  39. Boyer, P. D. The ATP synthase — a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  Google Scholar 

  40. Yasuda, R., Noji, H., Kinosita, K. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117–1124 (1998).

    Article  CAS  Google Scholar 

  41. Hendrickson, W. A., Horton, J. R. & LeMaster, D. M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990).

    Article  CAS  Google Scholar 

  42. Brünger, A. T. et al. Crystallography and NMR system (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  44. Phillips, J. C. & Hodgson, K. O. The use of anomalous scattering effects to phase diffraction patterns from macromolecules. Acta Crystallogr. A 36, 856–864 (1980).

    Article  Google Scholar 

  45. Burling, F. T., Weis, W. I., Flaherty, K. M. & Brünger, A. T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271, 72–77 (1996).

    Article  CAS  Google Scholar 

  46. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  47. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  48. Pannu, N. S. & Read, R. J. Improved structure refinement through maximum likelihood. Acta Crystallogr. A 52, 659–668 (1996).

    Article  Google Scholar 

  49. Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  50. Yu, R. C., Jahn, R. & Brünger, A. T. Crystal structure of the N-terminal domain of N-ethylmaleimide sensitive factor reveals possible α-SNAP binding site and unexpected structural similarity to EfTu. Mol. Cell (in the press).

Download references

Acknowledgements

We thank H. Bellamy and N. Sauter for beamline support and assistance during data collection; A. Morgan for communication of unpublished results; and R. Scheller for comments on the manuscript. This work is based upon research conducted at the SSRL, which is funded by the Department of Energy, Office of Basic Energy Sciences. The Biotechnology Program is supported by the NIH, National Center for Research Resources, Biomedical Technology Program and Department of Energy, Office of Biological and Environmental Research. A.P.M. was supported by a Stanford Medical School Dean’s Postdoctoral Fellowship and a Wellcome Trust International Prize Travelling Research Fellowship. K.M.S.M. was supported by Molecular Biophysics Training Grant GM08294 from the NIH. This work was supported by NIH grants HL56652 (to S.W.W.) and MH58570 (to W.I.W.) and by the Pew Scholars Program in the Biomedical Sciences (W.I.W.).

Correspondence and requests for materials should be addressed to W.I.W. Coordinates and structure factors have been deposited in Protein Data Bank under accession code 1QDN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William I. Weis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, A., Misura, K., Whiteheart, S. et al. Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein. Nat Cell Biol 1, 175–182 (1999). https://doi.org/10.1038/11097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing