Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the Janus-faced C2B domain of rabphilin

Abstract

C2 domains are widespread protein modules that often occur as tandem repeats in many membrane-trafficking proteins such as synaptotagmin and rabphilin. The first and second C2 domains (C2A and C2B, respectively) have a high degree of homology but also specific differences. The structure of the C2A domain of synaptotagmin I has been extensively studied but little is known about the C2B domains. We have used NMR spectroscopy to determine the solution structure of the C2B domain of rabphilin. The overall structure of the C2B domain is very similar to that of other C2 domains, with a rigid β-sandwich core and loops at the top (where Ca2+ binds) and the bottom. Surprisingly, a relatively long α-helix is inserted at the bottom of the domain and is conserved in all C2B domains. Our results, together with the Ca2+-independent interactions observed for C2B domains, indicate that these domains have a Janus-faced nature, with a Ca2+-binding top surface and a Ca2+-independent bottom surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The C2B domain binds Ca2+ in the absence of phospholipids.
Figure 2: Ca2+ binding to the C2B domain monitored by tryptophan fluorescence.
Figure 3: Solution structure of the C2B domain.
Figure 4: Sequence alignment of the C-terminal regions of C2 domains from proteins containing two consecutive C2 domains.
Figure 6: Taxonomy of C2 domains.
Figure 7: Comparison of the Ca2+-binding mode of the C2B domain with those of other C2 domains.
Figure 5: Packing of helix 2 with the rest of the C2B domain.

Similar content being viewed by others

References

  1. Nalefski, E. A. & Falke, J. J. The C2 domain calcium-binding motif: structural and functional diversity. Prot. Sci. 5, 2375–2390 (1996).

    Article  CAS  Google Scholar 

  2. Rizo, J. & Südhof, T. C. C2 domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661– 665 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R. & Südhof, T. C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Brose, N., Hofmann, K., Hata, Y. & Südhof, T. C. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2 domain proteins. J. Biol. Chem. 270 , 25273–25280 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Sutton, R. B., Davletov, B. A., Berghuis, A. M., Südhof, T. C. & Sprang, S. R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929–938 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Essen, L.-O., Perisic, O., Cheung, R., Katan, M. & Williams, R. L. Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ. Nature 380, 595– 602 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Grobler, J. A., Essen, L.O., Williams, R. L. & Hurley, J. H. C2 domain conformational changes in phospholipase C-δ1. Nature Struct. Biol. 3, 788–795 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Perisic, O., Fong, S., Lynch, D. E., Bycroft, M. & Williams, R. L. Crystal structure of a calcium-phospholipid binding domain from cytosolic phospholipase A2. J. Biol. Chem. 273, 1596–1604 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, G.-Y. et al. Solution structure and membrane interactions of the C2 domain of cytosolic phospholipase A2 . J. Mol. Biol. 280, 485–500 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  11. Sutton, R. B. & Sprang, S. R. Structure of the protein kinase C-β phospholipid-binding C2 domain complexed with Ca2+. Structure 6, 1395– 1405 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Pappa, H., Murray-Rust, J., Dekker, L. V., Parker, P. J. & McDonald, N. Q. Crystal structure of the C 2 domain from protein kinase C-δ. Structure 6, 885–894 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Shao, X., Davletov, B. A., Sutton, R. B., Südhof, T. C. & Rizo, J. A bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science 273, 248– 251 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Ubach, J., Zhang, X., Shao, X., Südhof, T. C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2 domain? EMBO J. 17, 3921–3930 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Essen, L.-O., Perisic, O., Lynch, D. E., Katan, M. & Williams, R. L. A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-δ1 . Biochemistry, 36, 2753– 2762 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Shao, X., Fernandez, I., Südhof, T. C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry 37, 16106– 16115 (1998).

  17. Shao, X. et al. Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron 18, 133–142 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, X., Rizo, J. & Südhof, T. C. Mechanism of phospholipid binding by the C2 A domain of synaptotagmin I. Biochemistry 37, 12395–12403 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Nalefski, E. A. et al. Independent folding and ligand specificity of the C2 calcium-dependent lipid binding domain of cytosolic phospholipase A 2 . J. Biol. Chem. 273, 1365– 1372 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Davletov, B. A., Perisic, O. & Williams, R. L. Calcium-dependent penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J. Biol. Chem. 273, 19093–19096 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  21. Südhof, T. C. & Rizo, J. Synaptotagmins: C 2 domain proteins that regulate membrane traffic. Neuron , 17, 379–388 ( 1996).

    Article  PubMed  Google Scholar 

  22. Shirataki, H. et al. Rabphilin-3A, a putative target protein for smg p25A/ rab3A p25 small GTP-binding protein related to synaptotagmin. Mol. Cell. Biol. 13, 2061–2068 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Orita, S. et al. DoC2: a novel brain protein having two repeated C 2-like domains. Biochem. Biophys. Res. Commun. 206, 439–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Sasakaguchi, G., Orita, S., Maeda, M., Igarashi, H. & Takai, Y. Molecular cloning of an isoform of doC2 having two C2-like domains. Biochem. Biophys. Res. Commun. 217, 1053–1061 ( 1995).

    Article  Google Scholar 

  25. Kwon, O.-J., Gainer, H., Wray, W. & Chin, H. Identification of a novel protein containing two C2 domains selectively expressed in the rat brain and kidney. FEBS Lett. 378, 135–139 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717 –727 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Sugita, S., Hata, Y. & Südhof, T. C. Distinct Ca2+-dependent properties of the first and second C2 domains of synaptotagmin I. J. Biol. Chem. 271, 1262–1265 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Chapman, E. R., An, S., Edwarson, J. M. & Jahn, R A novel function for the second C2 domain of synaptotagmin. J. Biol. Chem . 271, 5844–5849 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, J. Z., Davletov, B. A., Südhof, T. C. & Anderson, R. G. W. Synaptotagmin I is a high affinity receptor for clathrin AP2: implications for membrane recycling. Cell 78, 751– 760 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Fukuda, M., Aruga, J., Niinobe, M., Aimoto, S. & Mikoshiba, K. Inositol 1,3,4,5-tetrakisphosphate binding to the C 2B domain of IP4BP/synaptotagmin II. J. Biol. Chem. 269, 29206–29211 ( 1994).

    CAS  PubMed  Google Scholar 

  31. Schiavo, G., Gmachl, N. J., Stenbeck, G., Sollner, T. H. & Rothman, J. E. A possible docking and fusion particle for synaptic transmission. Nature 378, 733–376 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Sheng, Z. H., Yokoyama, C. T. & Catterall, W. A. Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc. Natl Acad. Sci. USA 94, 5405– 5410 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chung, S.-H., Takai, Y. & Holz, R. W. Evidence that the Rab3a-binding protein, rabphilin3a, enhances regulated secretion. J. Biol. Chem. 270, 16714–16718 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Chung, S.-H. et al. The C2 domains of rabphilin3A specifically bind phosphatidylinositol 4,5-bisphosphate containing vesicles in a Ca2+-dependent manner. J. Biol. Chem. 273, 10240–10248 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Bommert, K. et al. Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature 363, 163–165.

  36. Chapman, E. R., Desai, R. C., Davis, A. F. & Tornehl, C. K. Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. J. Biol. Chem. 273, 32966–32972 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Perin, M. S. The COOH terminus of synaptotagmin mediates interaction with the neurexins . J. Biol. Chem. 269, 8576– 8581 (1994).

    CAS  PubMed  Google Scholar 

  38. Fykse, E. M., Li, C. & Südhof, T. C. Phosphorylation of rabphilin-3A by Ca2+/calmodulin- and cAMP-dependent kinase in vitro. J. Neurosci. 15, 2385–2395 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, O., Kay, L. E., Olivier, J. P. & Forman-Kay, J. Backbone 1H and 15N resonance assignments of N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR 4, 845–858 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  40. Kay, L. E., Xu, G. Y. & Yamazaki, T. Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J. Magn. Reson. A 109, 129–133 (1994).

    Article  CAS  Google Scholar 

  41. Muhandiram, D. R. & Kay, L. E. Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity . J. Magn. Reson. B 103, 203– 216 (1994).

    Article  CAS  Google Scholar 

  42. Kay, L. E. Pulsed-field gradient-enhanced three-dimensional NMR experiment for correlating 13Ca/β, 13C", and 1Hα chemical shifts in uniformly 13C-labelled proteins dissolved in H2O . J. Am. Chem. Soc. 115, 2055– 2057 (1993).

    Article  CAS  Google Scholar 

  43. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J. Magn. Reson. B 101, 114–119 (1993).

    Article  CAS  Google Scholar 

  44. Kay, L. E., Xu, G.-Y., Singer, A. U., Muhandiram, D. R. & Forman-Kay, J. D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins . J. Magn. Reson. B 101, 333– 337 (1993).

    Article  CAS  Google Scholar 

  45. Kuboniwa, H., Grzesiek, S., Delaglio, F. & Bax, A. Measurement of HN-Ha J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J. Biomol. NMR 4, 871–878 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. & Bax, A. NMRpipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277 –293 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Stein, E.G., Rice, L. M. & Brunger, A.T. Torsion angle molecular dynamics: a new efficient tool for NMR structure calculation J. Mag. Res. Ser. B 124, 154–164 (1997).

    Article  CAS  Google Scholar 

  48. Brunger, A. T. et al. Crystallography and NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  50. Laskowsky, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check stereochemical quality of protein structure coordinates . J. Appl. Crystallogr. 26, 283– 2911993).

Download references

Acknowledgements

We thank L. Kay for providing pulse sequences for all triple-resonance experiments, and B. Sutton and A. Brunger for communicating results before publication. J.U. was a fellow from the Direccio General de Recerca, Generalitat de Catalunya, Spain, and J.G. was a fellow from the Departamento de Educacion, Universidades e Investigacion, Gobierno Vasco, Spain. This work was supported by NIH grant NS33731.

Correspondence and requests for materials should be addressed to J.R. The 20 structures of the rabphilin C2B domain have been deposited in the Protein Data Bank with accession number 3rpb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Rizo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ubach, J., García, J., Nittler, M. et al. Structure of the Janus-faced C2B domain of rabphilin. Nat Cell Biol 1, 106–112 (1999). https://doi.org/10.1038/10076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing