Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of the COPII coat with GTP and stable analogues

Abstract

We have developed an assay to monitor the assembly of the COPII coat onto liposomes in real time. We show that with Sar1pGTP bound to liposomes, a single round of assembly and disassembly of the COPII coat lasts a few seconds. The two large COPII complexes Sec23/24p and Sec13/31p bind almost instantaneously (in less than 1 s) to Sar1pGTP-doped liposomes. This binding is followed by a fast (less than 10 s) disassembly due to a 10-fold acceleration of the GTPase-activating protein activity of Sec23/24p by the Sec13/31p complex. Experiments with the phosphate analogue BeFx suggest that Sec23/24p provides residues directly involved in GTP hydrolysis on Sar1p.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequential assembly of the COPII coat onto liposomes as detected by light scattering.
Figure 2: Transient assembly of the COPII coat on liposomes preloaded with Sar1pGTP.
Figure 3: Sec13/31p stimulates the GAP activity of Sec23/24p.
Figure 4: Translocation of the COPII components in the presence of the phosphate analogue BeFx.
Figure 5: Morphology of major–minor mix liposomes incubated with COPII proteins and with no activator (a), GMP-PNP (b) or BeFx (c).
Figure 6: Assembly and disassembly of the COPII coat with Sar1pGTP at low temperature.

Similar content being viewed by others

References

  1. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).

    Article  CAS  Google Scholar 

  2. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996).

    Article  CAS  Google Scholar 

  3. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  Google Scholar 

  4. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  Google Scholar 

  5. Barlowe, C. & Schekman, R. SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 365, 347–349 (1993).

    Article  CAS  Google Scholar 

  6. Yoshihisa, T., Barlowe, C. & Schekman, R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259, 1466–1468 (1993).

    Article  CAS  Google Scholar 

  7. van Holde, K. E. Physical Biochemistry 2nd edn (Prentice-Hall, Englewood Cliffs, NJ, 1985).

    Google Scholar 

  8. Faurobert, E., Otto-Bruc, A., Chardin, P. & Chabre, M. Tryptophan W207 in transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved in the effector binding. EMBO J. 12, 4191–4198 (1993).

    Article  CAS  Google Scholar 

  9. Kahn, R. A. & Gilman, A. G. The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J. Biol. Chem. 261, 7906–7711 (1986).

    CAS  PubMed  Google Scholar 

  10. Chabre, M. Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology. Trends Biochem. Sci. 15, 6–10 (1990).

    Article  CAS  Google Scholar 

  11. Scheffzek, K., Ahmadian, M. R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci. 23, 257–262 (1998).

    Article  CAS  Google Scholar 

  12. Aridor, M. et al. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J. Cell Biol. 152, 213–230 (2001).

    Article  CAS  Google Scholar 

  13. Springer, S., Spang, A. & Schekman, R. A primer on vesicle budding. Cell 97, 145–148 (1999).

    Article  CAS  Google Scholar 

  14. Springer, S. & Schekman, R. Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs. Science 281, 698–700 (1998).

    Article  CAS  Google Scholar 

  15. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506 (1999).

    Article  CAS  Google Scholar 

  16. Serafini, T. et al. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239–253 (1991).

    Article  CAS  Google Scholar 

  17. Finazzi, D., Cassel, D., Donaldson, J. G. & Klausner, R. D. Aluminum fluoride acts on the reversibility of ARF1-dependent coat protein binding to Golgi membranes. J. Biol. Chem. 269, 13325–13330 (1994).

    CAS  PubMed  Google Scholar 

  18. Happe, S., Cairns, M., Roth, R., Heuser, J. & Weidman, P. Coatomer vesicles are not required for inhibition of Golgi transport by G-protein activators. Traffic 1, 342–353 (2000).

    Article  CAS  Google Scholar 

  19. Cukierman, E., Huber, I., Rotman, M. & Cassel, D. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999–2002 (1995).

    Article  CAS  Google Scholar 

  20. Goldberg, J. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893–902 (1999).

    Article  CAS  Google Scholar 

  21. Szafer, E. et al. Role of coatomer and phospholipids in GTPase-activating protein-dependent hydrolysis of GTP by ADP-ribosylation factor-1. J. Biol. Chem. 275, 23615–23619 (2000).

    Article  CAS  Google Scholar 

  22. Aridor, M., Weissman, J., Bannykh, S., Nuoffer, C. & Balch, W. E. Cargo selection by the COPII budding machinery during export from the ER. J. Cell Biol. 141, 61–70 (1998).

    Article  CAS  Google Scholar 

  23. Matsuoka, K., Morimitsu, Y., Uchida, K. & Schekman R. Coat assembly directs v-SNARE concentration into synthetic COPII vesicles. Mol. Cell. 2, 703–708 (1998).

    Article  CAS  Google Scholar 

  24. Goldberg, J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671–679 (2000).

    Article  CAS  Google Scholar 

  25. Malsam, J., Gommel, D., Wieland, F. T. & Nickel, W. A role for ADP ribosylation factor in the control of cargo uptake during COPI-coated vesicle biogenesis. FEBS Lett. 462, 267–272 (1999).

    Article  CAS  Google Scholar 

  26. Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J. 18, 4935–4948 (1999).

    Article  CAS  Google Scholar 

  27. Pepperkok, R., Whitney, J. A., Gomez, M. & Kreis, T. E. COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo. J. Cell Sci. 113, 135–144 (2000).

    CAS  PubMed  Google Scholar 

  28. Salama, N. R., Chuang, J. S. & Schekman, R. W. Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum. Mol. Biol. Cell 8, 205–217 (1997).

    Article  CAS  Google Scholar 

  29. Antonny, B., Béraud-Dufour, S., Chardin, P. & Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675–4684 (1997).

    Article  CAS  Google Scholar 

  30. Barlowe, C., d'Enfert, C. & Schekman, R. Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 268, 873–879 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Lesch and C. F. Chan for the preparation of COPII proteins, and M. Welsh for the use of the fluorimeter. This work was supported by the HHMI (R.S.), the Swiss National Science Foundation (L.O.), CNRS, NATO and HFSP (B.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy Schekman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonny, B., Madden, D., Hamamoto, S. et al. Dynamics of the COPII coat with GTP and stable analogues. Nat Cell Biol 3, 531–537 (2001). https://doi.org/10.1038/35078500

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing