Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new function for the γ -tubulin ring complex as a microtubule minus-end cap

Abstract

Microtubule nucleation from centrosomes involves a lockwasher-shaped protein complex containing γ-tubulin, named the γ-tubulin ring complex (γTuRC). Here we investigate the mechanism by which the γTuRC nucleates microtubules, using a direct labelling method to visualize the behaviour of individual γTuRCs. A fluorescently-labelled version of the γTuRC binds to the minus ends of microtubules nucleated in vitro. Both γTuRC-mediated nucleation and binding of the γTuRC to preformed microtubules block further minus-end growth and prevent microtubule depolymerization. The γTuRC therefore acts as a minus-end-capping protein, as confirmed by electron-microscopic examination of gold-labelled γTuRCs. These data support a nucleation model for γTuRC function that involves capping of microtubules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Covalent attachment of the fluorophore, OGM or biotin to the γTuRC labels all subunits and does not affect in vitro microtubule-nucleating activity.
Figure 2: Microtubule nucleation in the presence of OGM-labelled γTuRCs.
Figure 3: γTuRC binding correlates with microtubule minus-end capping.
Figure 4: Binding of γTuRCs to preformed microtubules prevents minus-end growth.
Figure 5: γTuRC binding prevents minus-end shrinkage.
Figure 6: Electron-microscopic analysis of gold-labelled γTuRCs.
Figure 7: Models for nucleation-independent capping activity of the γTuRC.

Similar content being viewed by others

References

  1. Burns, R. G. Identification of two new members of the tubulin family. Cell Motil. Cytoskeleton 31, 255–258 (1995).

    Article  CAS  Google Scholar 

  2. Oakley, C. E. & Oakley, B. R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338, 662– 664 (1989).

    Article  CAS  Google Scholar 

  3. Oakley, B. R. A nice ring to the centrosome. Nature 378, 555–556 (1995).

    Article  CAS  Google Scholar 

  4. Wiese, C. & Zheng, Y. γ-Tubulin complexes and their interaction with microtubule-organizing centers. Curr. Opin. Struct. Biol. 9, 250–259 ( 1999).

    Article  CAS  Google Scholar 

  5. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 ( 1995).

    Article  CAS  Google Scholar 

  6. Moudjou, M., Bordes, N., Paintrand, M. & Bornens, M. γ-Tubulin in mammalian cells: the centrosomal and the cytosolic forms . J. Cell Sci. 109, 875– 887 (1996).

    CAS  PubMed  Google Scholar 

  7. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. & Agard, D. A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638 –640 (1995).

    Article  CAS  Google Scholar 

  8. Moritz, M., Zheng, Y., Alberts, B. M. & Oegema, K. Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142, 775– 786 (1998).

    Article  CAS  Google Scholar 

  9. Oegema, K. et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 (1999).

    Article  CAS  Google Scholar 

  10. Martin, O. C., Gunawardane, R. N., Iwamatsu, A. & Zheng, Y. Xgrip109: a γ-tubulin-associated protein with an essential role in γ-tubulin ring complex (γTuRC) assembly and centrosome function. J. Cell Biol. 141, 675–687 ( 1998).

    Article  CAS  Google Scholar 

  11. Tassin, A. M., Celati, C., Moudjou, M. & Bornens, M. Characterization of the human homologue of the yeast spc98p and its association with γ-tubulin . J. Cell Biol. 141, 689– 701 (1998).

    Article  CAS  Google Scholar 

  12. Murphy, S. M., Urbani, L. & Stearns, T. The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J. Cell Biol. 141, 663–674 (1998).

    Article  CAS  Google Scholar 

  13. Tassin, A. M., Celati, C., Paintrand, M. & Bornens, M. Identification of an Spc110p-related protein in vertebrates. J. Cell Sci. 110, 2533–2545 (1997).

    CAS  PubMed  Google Scholar 

  14. Fava, F. et al. Human 76p: a new member of the γ-tubulin-associated protein family. J. Cell Biol. 147, 857– 868 (1999).

    Article  CAS  Google Scholar 

  15. Erickson, H. P. & Stoffler, D. Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to α/β- and γ tubulin. J. Cell Biol. 135, 5–8 (1996).

    Article  CAS  Google Scholar 

  16. Voter, W. A. & Erickson, H. P. The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J. Biol. Chem. 259, 10430–10438 ( 1984).

    CAS  PubMed  Google Scholar 

  17. Mitchison, T. J. & Kirschner, M. W. Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. J. Cell Biol. 101, 755–765 (1985).

    Article  CAS  Google Scholar 

  18. Bergen, L. G., Kuriyama, R. & Borisy, G. G. Polarity of microtubules nucleated by centrosomes and chromosomes of Chinese hamster ovary cells in vitro. J. Cell Biol. 84, 151–159 ( 1980).

    Article  CAS  Google Scholar 

  19. Byers, B., Shriver, K. & Goetsch, L. The role of spindle pole bodies and modified microtubule ends in the initiation of microtubule assembly in Saccharomyces cerevisiae . J. Cell Sci. 30, 331–352 (1978).

    CAS  PubMed  Google Scholar 

  20. Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 ( 1989).

    Article  CAS  Google Scholar 

  21. Vorobjev, I. A., Svitkina, T. M. & Borisy, G. G. Cytoplasmic assembly of microtubules in cultured cells. J. Cell Sci. 110, 2635– 2645 (1997).

    CAS  PubMed  Google Scholar 

  22. Yvon, A. M. & Wadsworth, P. Non-centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells. J. Cell Sci. 110, 2391–2401 (1997).

    CAS  PubMed  Google Scholar 

  23. Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D. & Borisy, G. G. Microtubule release from the centrosome . Proc. Natl Acad. Sci. USA 94, 5078– 5083 (1997).

    Article  CAS  Google Scholar 

  24. McNally, F. J., Okawa, K., Iwamatsu, A. & Vale, R. D. Katanin, the microtubule-severing ATPase, is concentrated at centrosomes. J. Cell Sci. 109, 561–567 (1996).

    CAS  PubMed  Google Scholar 

  25. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. KinI kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  Google Scholar 

  26. Hyman, A. et al. Preparation of modified tubulins. Methods Enzymol. 196, 478–485 ( 1991).

    Article  CAS  Google Scholar 

  27. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  Google Scholar 

  28. Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J. Cell Sci. 14 (suppl.), 125–127 (1991).

    Article  Google Scholar 

  29. Waterman-Storer, C., Desai, A. & Salmon, E. D. Fluorescent speckle microscopy of spindle microtubule assembly and motility in living cells. Methods Cell Biol. 61, 155–173 (1999).

    Article  CAS  Google Scholar 

  30. Evans, L., Mitchison, T. J. & Kirschner, M. W. Influence of the centrosome on the structure of nucleated microtubules. J. Cell Biol. 100, 1185– 1191 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Heymann for encouragement to try the direct labelling method. C.W. gratefully acknowledges K. Oegema’s help with ‘microtubulology’, and M. Sepanski’s expert technical assistance with the electron microscope. We thank J. Yanowitz, J. Gall, R. Gunawardane and S. Lizarraga for critical reading of the manuscript and A. Fire for help with statistical analysis. This work was supported by a postdoctoral fellowship from the American Cancer Society to C.W., and by a Pew Scholar’s Award and NIH Grant GM56312-01 to Y.Z.

Correspondence and requests for materials should be addressed to C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Wiese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiese, C., Zheng, Y. A new function for the γ -tubulin ring complex as a microtubule minus-end cap. Nat Cell Biol 2, 358–364 (2000). https://doi.org/10.1038/35014051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing