Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system

Abstract

Following the fusion of synaptic vesicles with the presynaptic plasma membrane of nerve terminals by the process of exocytosis, synaptic-vesicle components are recycled to replenish the vesicle pool. Here we use a pH-sensitive green fluorescent protein to measure the residence time of VAMP, a vesicle-associated SNARE protein important for membrane fusion, on the surfaces of synaptic terminals of hippocampal neurons following exocytosis. The time course of VAMP retrieval depends linearly on the amount of VAMP that is added to the plasma membrane, with retrieval occurring between about 4 seconds and 90 seconds after exocytosis, and newly internalized vesicles are rapidly acidified. These data are well described by a model in which endocytosis appears to be saturable, but proceeds with an initial maximum velocity of about one vesicle per second. We also find that, following exocytosis, a portion of the newly inserted VAMP appears on the surface of the axon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synapto-pHluorin-positive hippocampal terminals recycle synaptic vesicles efficiently.
Figure 2: Synapto-pHluorin signals during firing of action potentials.
Figure 3: Time course of exocytosis of synapto-pHluorin at individual boutons.
Figure 4: Kinetics of endocytosis of synapto-pHluorin.
Figure 5: Exocytosis of synapto-pHluorin at boutons is accompanied by a lateral spread of fluorescence onto adjacent axons.
Figure 6: Lateral spread of fluorescence onto axons arises from synapto-pHluorin in adjacent boutons.
Figure 7: Endocytosis behaves as a saturable process.

Similar content being viewed by others

References

  1. Koenig, J. H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844 –3860 (1989).

    Article  CAS  Google Scholar 

  2. Artalejo, C. R., Henley, J. R., McNiven, M. A. & Palfrey, H. C. Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proc. Natl Acad. Sci. USA 92, 8328–8332 (1995).

    Article  CAS  Google Scholar 

  3. Smith, C. & Neher, E. Multiple forms of endocytosis in bovine adrenal chromaffin cells. J. Cell Biol. 139, 885–894 (1997).

    Article  CAS  Google Scholar 

  4. Engisch, K. L. & Nowycky, M. C. Compensatory and excess retrieval: two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells. J. Physiol. (Lond.) 506, 591–608 (1998).

    Article  CAS  Google Scholar 

  5. Eliasson, L. et al. Endocytosis of secretory granules in mouse pancreatic beta-cells evoked by transient elevation of cytosolic calcium. J. Physiol. (Lond.) 493, 755–767 ( 1996).

    Article  CAS  Google Scholar 

  6. Thomas, P., Surprenant, A. & Almers, W. Cytosolic Ca2+, exocytosis, and endocytosis in single melanotrophs of the rat pituitary. Neuron 5, 723–733 (1990).

    Article  CAS  Google Scholar 

  7. von Gersdorff, H. & Matthews, G. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735–739 ( 1994).

    Article  CAS  Google Scholar 

  8. Parsons, T.D., Lenzi, D., Almers, W. & Roberts, W.M. Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13, 875– 883 (1994).

    Article  CAS  Google Scholar 

  9. Ryan, T. A. & Smith, S. J. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14, 983–989 (1995).

    Article  CAS  Google Scholar 

  10. Ryan, T. A., Smith, S. J. & Reuter, H. The timing of synaptic vesicle endocytosis. Proc. Natl Acad. Sci. USA 93, 5567– 5571 (1996).

    Article  CAS  Google Scholar 

  11. Wu, L. G. & Betz, W. J. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17, 769– 779 (1996).

    Article  CAS  Google Scholar 

  12. Scheller, R. H. Membrane trafficking in the presynaptic nerve terminal. Neuron 14, 893–897 ( 1995).

    Article  CAS  Google Scholar 

  13. Südhof, T. C. The synaptic vesicle cycle: a cascade of protein protein interactions. Nature 375, 645–653 ( 1995).

    Article  Google Scholar 

  14. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 ( 1998).

    Article  CAS  Google Scholar 

  15. Tabb, J. S., Kish, P. E., Van Dyke, R. & Ueda, T. Glutamate transport into synaptic vesicles. Roles of membrane potential pH gradient and intravesicular pH. J. Biol. Chem. 267, 15412–15418 (1992).

    CAS  PubMed  Google Scholar 

  16. Klingauf, J., Kavalali, E. T. & Tsien, R. W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581– 585 (1998).

    Article  CAS  Google Scholar 

  17. Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl Acad. Sci. USA 94, 6197–6201 (1997).

    Article  CAS  Google Scholar 

  18. Maycox, P. R., Deckwerth, T., Hell, J. W. & Jahn, R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and funtional reconstitution in proteoliposomes. J. Biol. Chem. 263 , 15423–15428 (1988).

    CAS  PubMed  Google Scholar 

  19. von Gersdorff, H. & Matthews, G. Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 652–655 ( 1994).

    Article  CAS  Google Scholar 

  20. Regehr, W. G., Delaney, K. R. & Tank, D. W. The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. J. Neurosci. 14, 523–537 (1994).

    Article  CAS  Google Scholar 

  21. Ryan, T. A. Endocytosis in nerve terminals: timing is everything. Neuron 17, 1035–1037 (1996).

    Article  CAS  Google Scholar 

  22. Murthy, V. N. & Stevens, C. F. Reversal of synaptic vesicle docking at central synapses. Nature Neurosci. 2, 503–507 (1999).

    Article  CAS  Google Scholar 

  23. Ryan, T. A., Reuter, H. & Smith, S. J. Optical detection of presynaptic quantal membrane turnover . Nature 388, 478–482 (1997).

    Article  CAS  Google Scholar 

  24. Valtorta, F., Jahn, R., Fesce, R., Greengard, P. & Ceccarelli, B. Synaptophysin (p38) at the frog neuromuscular junction: its incorporation into the axolemma and recycling after intense quantal secretion . J. Cell Biol. 107, 2717– 2727 (1988).

    Article  CAS  Google Scholar 

  25. Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction . J. Cell Biol. 57, 315– 344 (1973).

    Article  CAS  Google Scholar 

  26. Ceccarelli, B., Hurlbut, W. P. & Mauro, A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973).

    Article  CAS  Google Scholar 

  27. Takei, K., Mundigl, O., Daniell, L., & De Camilli, P. The synaptic vesicle budding cycle: a single vesicle budding step involving clathrin and dymamin. J. Cell Biol. 133,1237–1250 (1996).

  28. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7 ( 1999).

    Article  CAS  Google Scholar 

  29. Ryan, T. A. Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J. Neurosci. 19, 1317–1323 (1999).

    Article  CAS  Google Scholar 

  30. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Rothman for providing the ecliptic synapto-pHluorin construct, T. McGraw and F. Maxfield for useful discussions, and M. Delemos for technical assistance. This work was supported by the NIH, grant NS24692 (T.A.R.). T.A.R. is an Alfred P. Sloan Research fellow.

Correspondence and requests for materials should be addressed to T.A.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Ryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankaranarayanan, S., Ryan, T. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2, 197–204 (2000). https://doi.org/10.1038/35008615

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing