Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A myosin II mutation uncouples ATPase activity from motility and shortens step size

Abstract

It is thought that Switch II of myosin, kinesin and G proteins has an important function in relating nucleotide state to protein conformation. Here we examine a myosin mutant containing an S456L substitution in the Switch II region. In this protein, mechanical activity is uncoupled from the chemical energy of ATP hydrolysis so that its gliding velocity on actin filaments is only one-tenth of that of the wild type. The mutant spends longer in the strongly bound state and exhibits a shorter step size, which together account for the reduction in in vitro velocity. This is the first single point mutation in myosin that has been found to affect step size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The myosin ATPase cycle.
Figure 2: Crystal structure of Dictyostelium myosin II catalytic domain.
Figure 3: S456L myosin exhibits in vivo defects.
Figure 4: ATPase activity and motility of S456L myosin.
Figure 5: Measurement of step sizes.

Similar content being viewed by others

References

  1. Goldman, Y. E. Cell 93, 1–4 (1998).

    Article  CAS  Google Scholar 

  2. Vale, R. D. J. Cell Biol. 135, 291–302 (1996).

    Article  CAS  Google Scholar 

  3. Sellers, J. R. & Goodson, H. V. in Motor proteins 2: Myosin (ed. Sheterline, P.) (Academic, London, 1995).

    Google Scholar 

  4. Fisher, A. J. et al. Biochemistry 34, 8960–8972 (1995).

    Article  CAS  Google Scholar 

  5. Ruppel, K. M. & Spudich, J. A. Mol. Biol. Cell 7, 1123–1136 (1996).

    Article  CAS  Google Scholar 

  6. Sasaki, N., Shimada, T. & Sutoh, K. J. Biol. Chem. 273, 20334–20340 (1998).

    Article  CAS  Google Scholar 

  7. Furch, M., Fujita-Becker, S., Geeves, M. A., Holmes, K. C. & Manstein, D. J. J. Mol. Biol. 290, 797–809 (1999).

    Article  CAS  Google Scholar 

  8. Li, X. D. et al. J. Biol. Chem. 273, 27404–27411 (1998).

    Article  CAS  Google Scholar 

  9. Kambara, T. et al. J. Biol. Chem. 274, 16400–16406 (1999).

    Article  CAS  Google Scholar 

  10. Onishi, H. et al. Proc. Natl Acad. Sci. USA 95, 6653–6658 (1998).

    Article  CAS  Google Scholar 

  11. Springer, M. L., Patterson, B. & Spudich, J. A. Development 120, 2651–2660 (1994).

    CAS  PubMed  Google Scholar 

  12. Manstein, D. J., Titus, M. A., De Lozanne, A. & Spudich, J. A. EMBO J. 8, 923–932 (1989).

    Article  CAS  Google Scholar 

  13. Murphy, C. T. & Spudich, J. A. Biochemistry 37, 6738–6744 (1998).

    Article  CAS  Google Scholar 

  14. Smith, J. L., Silveira, L. A. & Spudich, J. A. EMBO J. 15, 6075–6083 (1996).

    Article  CAS  Google Scholar 

  15. Bradford, M. M. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  16. Pardee, J. D. & Spudich, J. A. Methods Cell Biol. 24, 271–289 (1982).

    Article  CAS  Google Scholar 

  17. Criddle, A. H., Geeves, M. A. & Jeffries, T. Biochemistry 232, 343–349 (1985).

    Article  CAS  Google Scholar 

  18. Murphy, C. T. & Spudich, J. A. Biochemistry 38, 3785–3792 (1999).

    Article  CAS  Google Scholar 

  19. Marriott, G. & Heidecker, M. Biochemistry 35, 3170–3174 (1996).

    Article  CAS  Google Scholar 

  20. Kron, S. J. & Spudich, J. A. Proc. Natl Acad. Sci. USA 83, 6272–6276 (1986).

    Article  CAS  Google Scholar 

  21. Spudich, J. A. Nature 372, 515–518 (1994).

    Article  CAS  Google Scholar 

  22. Siemankowski, R. F., Wiseman, M. O. & White, H. D. Proc. Natl Acad. Sci. USA 82, 658–662 (1985).

    Article  CAS  Google Scholar 

  23. Mehta, A. D., Finer, J. T. & Spudich, J. A. Proc. Natl Acad. Sci. USA 94, 7927–7931 (1997).

    Article  CAS  Google Scholar 

  24. Mehta, A. D. et al. Nature 400, 590–593 (1999).

    Article  CAS  Google Scholar 

  25. Mehta, A. D., Finer, J. T., Spudich, J. A. Methods Enzymol. 298, 436–459 (1998).

    Article  CAS  Google Scholar 

  26. Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. Structure 1, 35–50 (1993).

    Article  CAS  Google Scholar 

  27. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Cell 94, 559–571 (1998).

    Article  CAS  Google Scholar 

  28. Veigel, C. et al. Nature 398, 530–533 (1999).

    Article  CAS  Google Scholar 

  29. Ritchie, M. D., Geeves, M. A., Woodward, S. K. A. & Manstein, D. J. Proc. Natl Acad. Sci. USA 90, 8619–8623 (1993).

    Article  CAS  Google Scholar 

  30. Bauer, C. B., Kuhlman, P. A., Bagshaw, C. R. & Rayment, I. J. Mol. Biol. 274, 394–707 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mehta for the wild type step size data and H. Warrick, D. Robinson and D. Hostetter for comments. C.T.M. was a Predoctoral Fellow of the Howard Hughes Medical Institute. R.S.R. is a Helen Hay Whitney Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Spudich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, C., Rock, R. & Spudich, J. A myosin II mutation uncouples ATPase activity from motility and shortens step size. Nat Cell Biol 3, 311–315 (2001). https://doi.org/10.1038/35060110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35060110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing