Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequential-replenishment mechanism of exocytosis in pancreatic acini

Abstract

Here we report exocytosis of zymogen granules, as examined by multiphoton excitation imaging in intact pancreatic acini. Cholecystokinin induces Ca2+ oscillations that trigger exocytosis when the cytosolic Ca2+ concentration exceeds 1 μM. Zymogen granules fused with the plasma membrane maintain their Ω-shaped profile for an average of 220 s and serve as targets for sequential fusion of granules that are located within deeper layers of the cell. This secondary exocytosis occurrs as rapidly as the primary exocytosis and accounts for most exocytotic events. Granule–granule fusion does not seem to precede primary exocytosis, indicating that secondary fusion events may require a plasma-membrane factor. This sequential-replenishment mechanism of exocytosis allows the cell to take advantage of a large supply of fusion-ready granules without needing to transport them to the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exocytosis and [Ca2+]i at low CCK concentration.
Figure 2: Exocytosis and [Ca2+]i at a high CCK concentration.
Figure 3: CCK-dependence and lifetime of Ω-shaped profiles.
Figure 4: Diameters of zymogen granules and SRB-filled structures.
Figure 5: Sequential exocytosis of zymogen granules.
Figure 6: Sequential-replenishment mechanism of exocytosis.

Similar content being viewed by others

References

  1. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  2. Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347–358 ( 1975).

    Article  CAS  Google Scholar 

  3. Petersen, O. H., Petersen, C. C. H. & Kasai, H. Calcium and hormone action. Annu. Rev. Physiol. 56, 297–319 ( 1994).

    Article  CAS  Google Scholar 

  4. Hansen, N. J., Antonin, W. & Edwardson, J. M. Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J. Biol. Chem. 274, 22871–22876 (1999).

    Article  CAS  Google Scholar 

  5. Albright, T. D., Jessell, T. M., Kandel, E. R. & Posner, M. I. Neural science: a century of progress and the mysteries that remain. Neuron 25, S1–S55 ( 2000).

    Article  Google Scholar 

  6. Kasai, H. & Takahashi, N. Multiple kinetic components and the Ca2+ requirements of exocytosis. Phil. Trans. R. Soc. Lond. B 354, 331–335 (1999).

    Article  CAS  Google Scholar 

  7. Ichikawa, A. Fine structural changes in response to hormonal stimulation of the perfused caine pancreas. J. Cell Biol. 24, 369– 385 (1965).

    Article  CAS  Google Scholar 

  8. Amsterdam, A., Ohad, I. & Schubart, U. K. Dynamic changes in the ultrastrucure of the acinar cell of the rat parotid gland during the secretory cycle. J. Biochem. 41, 753–773 ( 1969).

    CAS  Google Scholar 

  9. Padfield, P. J. & Panesar, N. Ca2+ dependent amylase secretion from SLO-permeabilized rat pancreatic acini requires diffusible cytosolic proteins. Am. J. Physiol. 269, G647–G652 (1995).

    CAS  PubMed  Google Scholar 

  10. Ito, K., Miyashita, Y. & Kasai, H. Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells. EMBO J. 16, 242–251 ( 1997).

    Article  CAS  Google Scholar 

  11. Segawa, A. Measurement of secretion in confocal microscopy. Methods Enzymol. 307, 328–340 ( 1999).

    Article  CAS  Google Scholar 

  12. Ito, K., Miyashita, Y. & Kasai, H. Kinetic control of multiple forms of Ca2+ spikes by inositol trisphosphate in pancreatic acinar cells. J. Cell Biol. 146, 405–414 (1999).

    Article  CAS  Google Scholar 

  13. Thorn, P., Lawrie, A. M., Smith, P. M., Gallacher, D. V. & Petersen, O. H. Local and global Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate . Cell 74, 661–668 (1993).

    Article  CAS  Google Scholar 

  14. Padfield, P. J. & Panesar, N. Cholecystokinin octapeptide inhibits Ca2+-dependent amylase secretion from permeabilized pancreatic acini by blocking the MgATP-dependent priming of exocytosis. Biochem. J. 330, 329– 334 (1998).

    Article  CAS  Google Scholar 

  15. Williams, R. M., Shear, J. B., Zipfel, W. R., Maiti, S. & Webb, W. W. Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence . Biophys. J. 76, 1835– 1846 (1999).

    Article  CAS  Google Scholar 

  16. Vogel, S. & Zimmerberg, J. Proteins on exocytotic vesicles mediate calcium-triggered fusion. Proc. Natl Acad. Sci. USA 89, 4749–4753 (1992).

    Article  CAS  Google Scholar 

  17. Segawa, A. & Riva, A. Dynamics of salivary secretion studied by confocal laser and scanning electron microscopy. Eur. J. Morphol. 34, 215–219 ( 1996).

    Article  CAS  Google Scholar 

  18. Padfield, P. J. & Panesar, N. MgATP acts before Ca2+ to prime amylase secretion from permeabilized rat pancreatic acini. Am. J. Physiol. 273, G655– G660 (1997).

    CAS  PubMed  Google Scholar 

  19. Chestkov, V. V., Radko, S. P., Cho, M. S., Chrambach, A. & Vogel, S. S. Reconstitution of calcium-triggered membrane fusion using `reserve' granules. J. Biol. Chem. 273, 2445–2451 (1998).

    Article  CAS  Google Scholar 

  20. Xu, Z., Sato, K. & Wickner, W. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion . Cell 93, 1125–1134 (1998).

    Article  CAS  Google Scholar 

  21. Kasai, H. et al. Multiple and diverse forms of regulated exocytosis in wild-type and defective PC12 cells. Proc. Natl Acad. Sci. USA 96, 945–949 (1999).

    Article  CAS  Google Scholar 

  22. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy . Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  23. Tse, A., Tse, F. W., Almers, W. & Hille, B. Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science 260, 82–84 ( 1993).

    Article  CAS  Google Scholar 

  24. Maruyama, Y. & Petersen, O. H. Delay in granular fusion evoked by repetitive cytosolic Ca2+ spikes in mouse pancreatic acinar cells. Cell Calcium 16, 419– 430 (1994).

    Article  CAS  Google Scholar 

  25. Anderson, P., Slorach, S. A. & Uvnas, B. Sequential exocytosis of storage granules during antigen-induced histamine release from sensitized rat mast cells in vitro. An electron microscopic study. Acta Physiol. Scand. 88, 359–372 (1973).

    Article  CAS  Google Scholar 

  26. Forte, J. G., Black, J. A., Forte, T. M., Machen, T. E. & Wolosin, J. M. Ultrastructural changes related to functional activity in gastric oxyntic cells. Am. J. Physiol. 241, G349-G358 (1981).

  27. Alvarez, D. T. & Fernandez, J. M. Compound versus multigranular exocytosis in peritoneal mast cells. J. Gen. Physiol. 95, 397–409 ( 1990).

    Article  Google Scholar 

  28. Dvorak, A. M. et al. Anaphylactic degranulation of guinea pig basophilic leukocytes. I. Fusion of granule membranes and cytoplasmic vesicles formation and resolution of degranulation sacs. Lab. Invest. 44, 174–191 (1981).

    CAS  PubMed  Google Scholar 

  29. Tai, P. C. & Spry, C. J. The mechanisms which produce vacuolated and degranulated eosinophils. Br. J. Haematol. 49, 219–226 (1981).

    Article  CAS  Google Scholar 

  30. Scepek, S. & Lindau, M. Focal exocytosis by eosinophils — comound exocytosis and cumulative fusion. EMBO J. 12 , 1811–1817 (1993).

    Article  CAS  Google Scholar 

  31. Angleson, J. K., Cochilla, A. J., Kilic, G., Nussinovitch, I. & Betz, W. J. Regulation of dense core release from neuroendocrine cells revealed by imaging single exocytic events. Nature Neurosci. 2, 440–446 (1999).

    Article  CAS  Google Scholar 

  32. Kasai, H. Comparative biology of exocytosis:implications of kinetic diversity for secretory function. Trends Neurosci. 22, 88– 93 (1999).

    Article  CAS  Google Scholar 

  33. Wolf, D. E. Designing, building, and using a fluorescence recovery after photobleaching instrument. Methods Cell Biol. 30, 271– 306 (1989).

    Article  CAS  Google Scholar 

  34. Drenckhahn, D. & Mannherz, H. G. Distribution of actin and the actin-associated proteins myosin, tropomyosin, alpha-actinin, vinculin, and villin in rat and bovine exocrne glands. Eur. J. Cell Biol. 30, 167–176 ( 1983).

    CAS  PubMed  Google Scholar 

  35. Fox, G. Q. A morphometric analysis of exocytosis in KCl-stimulated bovine chromaffin cells. Cell Tissue Res. 284, 303– 316 (1996).

    Article  CAS  Google Scholar 

  36. Orci, L. & Malaisse, W. Hypothesis: single and chain release of insulin secretory granules is related to anionic transport at exocytotic sites. Diabetes 29, 943– 944 (1980).

    Article  CAS  Google Scholar 

  37. Furuya, S., Edwards, C. & Ornberg, R. L. Exocytosis of bovine chromaffin granules in Ficoll captured by rapid freezing. J. Electron Microsc. 38 , 143–147 (1989).

    CAS  Google Scholar 

  38. Baker, P. & Knight, D. E. Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Phil. Trans. R. Soc. Lond. B 296, 83–103 (1981).

    Article  CAS  Google Scholar 

  39. Rosenboom, H. & Lindau, M. Exo–endocytosis and closing of the fission pore during endocytosis in single pituitary nerve terminals internally perfused with high calcium concentrations. Proc. Natl Acad. Sci. USA 91, 5267–5271 (1994).

    Article  CAS  Google Scholar 

  40. Thomas, P., Lee, A. K., Wong, J. G. & Almers, W. A triggered mechanism retrieves membrane in seconds after Ca2+-stimulated exocytosis in single pituitary cells. J. Cell Biol. 124, 667–675 (1994).

    Article  CAS  Google Scholar 

  41. Heuser, J. E. & Reese, T. S. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol. 88, 564–580 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST), and by the Research for the Future program of the Japan Society for the Promotion of Science (JSPS), of which K.I. is a research fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Kasai.

Supplementary information

Figure S1

Comparison of depth penetration between two-photon excitation imaging and confocal imaging. a, b, Images of an acinar preparation stained with Oregon green 488 BAPTA-1-AM, acquired by x–z scanning with two-photon laser-scanning microscopy (a) or confocal laser-scanning microscopy (b). Luminal structures are apparent in the two-photon excitation image, but not in the confocal image. Confocal imaging (Fig. 1b, d) was carried out using the same scanning microscope and objective lens, but an argon laser was used for excitation at 488 nm and fluorescence of Oregon green 488 BAPTA-1 was measured at 500–600 nm through a pinhole (Olympus, CA2). c, Stereo-pair of two-photon images, obtained by xndash;yndash;z scanning of an acinar preparation that had been immersed in 0.5 mM SRB for 20 min and stimulated with 10 pM CCK for 5 min. Many W-shaped profiles of fused zymogen granules are visible adjacent to lumens, but not to basolateral membranes. (PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemoto, T., Kimura, R., Ito, K. et al. Sequential-replenishment mechanism of exocytosis in pancreatic acini . Nat Cell Biol 3, 253–258 (2001). https://doi.org/10.1038/35060042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35060042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing