Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental control of cell morphogenesis: a focus on membrane growth

Abstract

To date, the role of transport and insertion of membrane in the control of membrane remodelling during cell and tissue morphogenesis has received little attention. In contrast, the contributions of cytoskeletal rearrangements and both intercellular and cell–substrate attachments have been the focus of many studies. Here, we review work from many developmental systems that highlights the importance of polarized membrane growth and suggests a general model for the role of endocytic recycling during cell morphogenesis. We also address how the spatio-temporal control of membrane insertion during development can account for various classes of tissue rearrangements. We suggest that tubulogenesis, tissue spreading and cell intercalation stem mostly from a remarkably small number of cell intrinsic surface remodelling events that confer on cells different modes of migratory behaviours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane protrusions and invaginations involve polarized membrane growth.
Figure 2: Spatial organization and orientation of epithelial cell movement.
Figure 3: Polarized cell elongation during tissue spreading.
Figure 4: Polarized remodelling of cell adhesion during cell intercalation.

Similar content being viewed by others

References

  1. Gumbiner, B.M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).

    CAS  PubMed  Google Scholar 

  2. Mitchison, T.J. & Cramer, L.P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    CAS  PubMed  Google Scholar 

  3. Bretscher, M.S. Distribution of receptors for transferrin and low density lipoprotein on the surface of giant HeLa cells. Proc. Natl Acad. Sci. USA 80, 454–458 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bretscher, M.S. Moving membrane up to the front of migrating cells. Cell 85, 465–467 (1996).

    CAS  PubMed  Google Scholar 

  5. Bretscher, M.S. & Aguado-Velasco, C. Membrane traffic during cell locomotion. Curr. Opin. Cell Biol. 10, 537–541 (1998).

    CAS  PubMed  Google Scholar 

  6. Drubin, D.G. & Nelson, W.J. Origins of cell polarity. Cell 84, 335–44 (1996).

    CAS  PubMed  Google Scholar 

  7. Neiman, A.M. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J. Cell Biol. 140, 29–37 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fullilove, S.L. & Jacobson, A.G. Nuclear elongation and cytokinesis in Drosophila montana. Dev. Biol. 26, 560–577 (1971).

    CAS  PubMed  Google Scholar 

  9. Foe, V.E., Odell, G.M. and Edgar, B.A. Mitosis and morphogenesis in the Drosophila embryo: point and counterpoint. in The Development of Drosophila melanogaster, Vol. 1 149–300 (Cold Spring Harbor Laboratory Press, 1993).

    Google Scholar 

  10. Loncar, D. & Singer, S.J. Cell membrane formation during the cellularization of the syncytial blastoderm of Drosophila. Proc. Natl Acad. Sci. USA 92, 2199–2203 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lecuit, T. & Wieschaus, E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J. Cell Biol. 150, 849–860 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zecevic, N. & Rakic, P. Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man. J. Comp. Neurol. 167, 27–47 (1976).

    CAS  PubMed  Google Scholar 

  13. Bradke, F. & Dotti, C.G. Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Curr. Opin. Neurobiol. 10, 574–581 (2000).

    CAS  PubMed  Google Scholar 

  14. Wolff, T. & Ready, D.F. in The Development of Drosophila melanogaster (eds Martinez-Arias, A. & Bate, M.) (Cold Spring Harbor Press, Cold Spring Harbor, 1993).

    Google Scholar 

  15. Izaddoost, S., Nam, S.C., Bhat, M.A., Bellen, H.J. & Choi, K.W. Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 416, 178–183 (2002).

    CAS  PubMed  Google Scholar 

  16. Pellikka, M. et al. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 416, 143–149 (2002).

    CAS  PubMed  Google Scholar 

  17. Sisson, J.C., Field, C., Ventura, R., Royou, A. & Sullivan, W. Lava Lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization. J. Cell Biol. 151, 905–918 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wirtz, H.R. & Dobbs, L.G. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250, 1266–1269 (1990).

    CAS  PubMed  Google Scholar 

  19. Truschel, S.T. et al. Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol. Biol. Cell 13, 830–846 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580–585 (1998).

    CAS  PubMed  Google Scholar 

  21. Hill, E., Clarke, M. & Barr, F.A. The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J. 19, 5711–5719 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Satoh, A., Tokunaga, F., Kawamura, S. & Ozaki, K. In situ inhibition of vesicle transport and protein processing in the dominant negative Rab1 mutant of Drosophila. J. Cell Sci. 110, 2943–2953 (1997).

    CAS  PubMed  Google Scholar 

  23. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    CAS  PubMed  Google Scholar 

  24. Franco, M. et al. EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J. 18, 1480–1491 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bajno, L. et al. Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J. Cell Biol. 149, 697–706 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Derrien, V. et al. A conserved C-terminal domain of EFA6-family ARF6-guanine nucleotide exchange factors induces lengthening of microvilli-like membrane protrusions. J. Cell Sci. 115, 2867–2879 (2002).

    CAS  PubMed  Google Scholar 

  27. Aguado-Velasco, C. & Bretscher, M.S. Circulation of the plasma membrane in Dictyostelium. Mol. Biol. Cell 10, 4419–4427 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hopkins, C.R., Gibson, A., Shipman, M., Strickland, D.K. & Trowbridge, I.S. In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the pericentriolar area, and then routed to the plasma membrane of the leading lamella. J. Cell Biol. 125, 1265–1274 (1994).

    CAS  PubMed  Google Scholar 

  29. Laukaitis, C.M., Webb, D.J., Donais, K. & Horwitz, A.F. Differential dynamics of α5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lawson, M.A. & Maxfield, F.R. Calcium- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377, 75–79 (1995).

    CAS  PubMed  Google Scholar 

  31. Kamiguchi, H. & Lemmon, V. Recycling of the cell adhesion molecule L1 in axonal growth cones. J. Neurosci. 20, 3676–3686 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamiguchi, H. et al. The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J. Neurosci. 18, 5311–5321 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kamiguchi, H. & Yoshihara, F. The role of endocytic l1 trafficking in polarized adhesion and migration of nerve growth cones. J. Neurosci. 21, 9194–9203 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fournier, A.E. et al. Semaphorin3A enhances endocytosis at sites of receptor–F-actin colocalization during growth cone collapse. J. Cell Biol. 149, 411–22 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Radhakrishna, H. & Donaldson, J.G. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol. 139, 49–61 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Peters, P.J. et al. Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J. Cell Biol. 128, 1003–1017 (1995).

    CAS  PubMed  Google Scholar 

  37. D'Souza-Schorey, C., Li, G., Colombo, M.I. & Stahl, P.D. A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267, 1175–1178 (1995).

    CAS  PubMed  Google Scholar 

  38. D'Souza-Schorey, C. et al. ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J. Cell Biol. 140, 603–616 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Radhakrishna, H., Al-Awar, O., Khachikian, Z. & Donaldson, J.G. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855–66 (1999).

    CAS  PubMed  Google Scholar 

  40. Burgess, R.W., Deitcher, D.L. & Schwarz, T.L. The synaptic protein syntaxin1 is required for cellularization of Drosophila embryos. J. Cell Biol. 138, 861–875 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jantsch-Plunger, V. & Glotzer, M. Depletion of syntaxins in the early Caenorhabditis elegans embryo reveals a role for membrane fusion events in cytokinesis. Curr. Biol. 9, 738–745 (1999).

    CAS  PubMed  Google Scholar 

  42. Lauber, M.H. et al. The Arabidopsis knolle protein is a cytokinesis-specific syntaxin. J. Cell Biol. 139, 1485–1493 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Waizenegger, I. et al. The Arabidopsis knolle and keule genes interact to promote vesicle fusion during cytokinesis. Curr. Biol. 10, 1371–1374 (2000).

    CAS  PubMed  Google Scholar 

  44. McNiven, M.A. Dynamin: a molecular motor with pinchase action. Cell 94, 151–154 (1998).

    CAS  PubMed  Google Scholar 

  45. Swanson, M.P., CA. The shibire-ts mutant of Drosophila: a probe for the study of embryonic development. Dev. Biol. 84, 465–470 (1981).

    CAS  PubMed  Google Scholar 

  46. Skop, A.R., Bergmann, D., Mohler, W.A. & White, J.G. Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Curr. Biol. 11, 735–746 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R.G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    CAS  PubMed  Google Scholar 

  48. Schweitzer, J.K. & D'Souza-Schorey, C. Localization and activation of the ARF6 GTPase during cleavage furrow ingression and cytokinesis. J. Biol. Chem. 277, 27210–27216 (2002).

    CAS  PubMed  Google Scholar 

  49. Bodmer, R. & Venkatesh, T.V. Heart development in Drosophila and vertebrates: conservation of molecular mechanisms. Dev. Genet. 22, 181–186 (1998).

    CAS  PubMed  Google Scholar 

  50. Chartier, A., Zaffran, S., Astier, M., Semeriva, M. & Gratecos, D. Pericardin, a Drosophila type IV collagen-like protein is involved in the morphogenesis and maintenance of the heart epithelium during dorsal ectoderm closure. Development 129, 3241–3253 (2002).

    CAS  PubMed  Google Scholar 

  51. Ponzielli, R. et al. Heart tube patterning in Drosophila requires integration of axial and segmental information provided by the Bithorax Complex genes and hedgehog signaling. Development 129, 4509–4521 (2002).

    CAS  PubMed  Google Scholar 

  52. Lee, T., Hacohen, N., Krasnow, M. & Montell, D.J. Regulated Breathless receptor tyrosine kinase activity required to pattern cell migration and branching in the Drosophila tracheal system. Genes Dev. 10, 2912–2921 (1996).

    CAS  PubMed  Google Scholar 

  53. Sutherland, D., Samakovlis, C. & Krasnow, M.A. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87, 1091–101 (1996).

    CAS  PubMed  Google Scholar 

  54. Metzger, R.J. & Krasnow, M.A. Genetic control of branching morphogenesis. Science 284, 1635–1639 (1999).

    CAS  PubMed  Google Scholar 

  55. Ribeiro, C., Ebner, A. & Affolter, M. In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev. Cell 2, 677–683 (2002).

    CAS  PubMed  Google Scholar 

  56. Shim, K., Blake, K.J., Jack, J. & Krasnow, M.A. The Drosophila ribbon gene encodes a nuclear BTB domain protein that promotes epithelial migration and morphogenesis. Development 128, 4923–4933 (2001).

    CAS  PubMed  Google Scholar 

  57. O'Brien, L.E., Zegers, M.M. & Mostov, K.E. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nature Rev. Mol. Cell Biol. 3, 531–537 (2002).

    CAS  Google Scholar 

  58. Lipschutz, J.H. et al. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol. Biol. Cell 11, 4259–4275 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pollack, A.L., Runyan, R.B. & Mostov, K.E. Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell–cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev. Biol. 204, 64–79 (1998).

    CAS  PubMed  Google Scholar 

  60. TerBush, D.R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Grindstaff, K.K. et al. Sec6–8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    CAS  PubMed  Google Scholar 

  62. Lipschutz, J.H. & Mostov, K.E. Exocytosis: the many masters of the Exocyst. Curr. Biol. 12, R212–R214 (2002).

    CAS  PubMed  Google Scholar 

  63. Jacinto, A., Woolner, S. & Martin, P. Dynamic analysis of dorsal closure in Drosophila: from genetics to cell biology. Dev. Cell 3, 9–19 (2002).

    CAS  PubMed  Google Scholar 

  64. Zeitlinger, J. & Bohmann, D. Thorax closure in Drosophila: involvement of Fos and the JNK pathway. Development 126, 3947–3956 (1999).

    CAS  PubMed  Google Scholar 

  65. Glise, B., Bourbon, H. & Noselli, S. hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell 83, 451–461 (1995).

    CAS  PubMed  Google Scholar 

  66. Riesgo-Escovar, J.R., Jenni, M., Fritz, A. & Hafen, E. The Drosophila Jun-N-terminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye. Genes Dev. 10, 2759–2768 (1996).

    CAS  PubMed  Google Scholar 

  67. Sluss, H.K., Han, Z., Barrett, T., Davis, R.J. & Ip, Y.T. A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev. 10, 2745–2758 (1996).

    CAS  PubMed  Google Scholar 

  68. Halsell, S.R., Chu, B.I. & Kiehart, D.P. Genetic analysis demonstrates a direct link between rho signaling and nonmuscle myosin function during Drosophila morphogenesis. Genetics 155, 1253–1265 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mizuno, T., Tsutsui, K. & Nishida, Y. Drosophila myosin phosphatase and its role in dorsal closure. Development 129, 1215–1223 (2002).

    CAS  PubMed  Google Scholar 

  70. Hakeda-Suzuki, S. et al. Rac function and regulation during Drosophila development. Nature 416, 438–442 (2002).

    CAS  PubMed  Google Scholar 

  71. Jacinto, A. et al. Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr. Biol. 10, 1420–1426 (2000).

    CAS  PubMed  Google Scholar 

  72. Young, P.E., Richman, A.M., Ketchum, A.S. & Kiehart, D.P. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 7, 29–41 (1993).

    CAS  PubMed  Google Scholar 

  73. Kiehart, D.P., Galbraith, C.G., Edwards, K.A., Rickoll, W.L. & Montague, R.A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Arquier, N., Perrin, L., Manfruelli, P. & Semeriva, M. The Drosophila tumor suppressor gene lethal(2) giant larvae is required for the emission of the Decapentaplegic signal. Development 128, 2209–2220 (2001).

    CAS  PubMed  Google Scholar 

  75. Kaltschmidt et al. Planar polarity and actin dynamics in the epidermis of Drosophila. Nature Cell Biol. (in the press).

  76. Wallingford, J.B., Fraser, S.E. & Harland, R.M. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2, 695–706 (2002).

    CAS  PubMed  Google Scholar 

  77. Wallingford, J.B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    CAS  PubMed  Google Scholar 

  78. Munro, E.M. & Odell, G. Morphogenetic pattern formation during ascidian notochord formation is regulative and highly robust. Development 129, 1–12 (2002).

    CAS  PubMed  Google Scholar 

  79. Munro, E.M. & Odell, G.M. Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord. Development 129, 13–24 (2002).

    CAS  PubMed  Google Scholar 

  80. Irvine, K.D. & Wieschaus, E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994).

    CAS  PubMed  Google Scholar 

  81. Brown, S. & Castelli-Gair Hombria, J. Drosophila grain encodes a GATA transcription factor required for cell rearrangement during morphogenesis. Development 127, 4867–4876 (2000).

    CAS  PubMed  Google Scholar 

  82. Hu, N. & Castelli-Gair, J. Study of the posterior spiracles of Drosophila as a model to understand the genetic and cellular mechanisms controlling morphogenesis. Dev. Biol. 214, 197–210 (1999).

    CAS  PubMed  Google Scholar 

  83. Tree, D.R., Ma, D. & Axelrod, J.D. A three-tiered mechanism for regulation of planar cell polarity. Semin. Cell Dev. Biol. 13, 217–224 (2002).

    CAS  PubMed  Google Scholar 

  84. Gho, M. & Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature 393, 178–181 (1998).

    CAS  PubMed  Google Scholar 

  85. Axelrod, J.D. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev. 15, 1182–1187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Strutt, D.I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–295 (1997).

    CAS  PubMed  Google Scholar 

  87. Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–54 (2001).

    CAS  PubMed  Google Scholar 

  88. Lecuit, T.S., R. and Wieschaus, E. slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev. Cell 2, 425–436 (2002).

    CAS  PubMed  Google Scholar 

  89. Jarrett, O., Stow, J.L., Yap, A.S. & Key, B. Dynamin-dependent endocytosis is necessary for convergent-extension movements in Xenopus animal cap explants. Int. J. Dev. Biol. 46, 467–473 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Martinez-Arias and A. Le Bivic for sharing unpublished results and images, and J. Ewbank, J. Grosshans, S. Kerridge, A. Le Bivic, A. Pelissier and P. Pierre for useful comments on the manuscript. We also thank the comments of anonymous referees. T.L. is supported by an ATIP grant from Centre National de la Recherche Scientifique, by the Fondation pour la Recherche Médicale and Association pour la Recherche contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lecuit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecuit, T., Pilot, F. Developmental control of cell morphogenesis: a focus on membrane growth. Nat Cell Biol 5, 103–108 (2003). https://doi.org/10.1038/ncb0203-103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0203-103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing