Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Re-staging mitosis: a contemporary view of mitotic progression

The process of cell division, or mitosis, has fascinated biologists since its discovery in the late 1870s. Progress through mitosis is traditionally divided into stages that were defined over 100 years ago from analyses of fixed material from higher plants and animals. However, this terminology often leads to ambiguity, especially when comparing different systems. We therefore suggest that mitosis can be re-staged to reflect more accurately the molecular pathways that underlie key transitions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The traditional stages of mitosis in a salamander cell, visualized by phase-contrast light microscopy
Figure 2: Comparison of the traditional phases of mitosis (top) and our proposed transitions (bottom).
Figure 3: Chromosome condensation during prophase can be inhibited, and even reversed, by various treatments.

References

  1. Mazia, D. in 77–412 (Academic, New York, 1961).

  2. Kubai, D. F. Int. Rev. Cytol. 43, 167–227 (1975).

    Article  CAS  Google Scholar 

  3. Lee, K. K., Gruenbaum, Y., Spann, P., Liu, J. & Wilson, L. Mol. Biol. Cell 11, 3089–3099 (2000).

    Article  CAS  Google Scholar 

  4. Nicklas, R. B. & Arana, P. J. Cell Sci. 102, 681–690 (1992).

    PubMed  Google Scholar 

  5. Heath, I. B. Mycologia 72, 229–250 ( 1980).

    Article  Google Scholar 

  6. Bullough, W. S. & Johnson, M. Proc. Roy. Soc. Lond. B 138, 562l–575 ( 1951).

    Article  Google Scholar 

  7. Puck, T. T. & Steffen, P. Biophys. J. 3, 379–397 (1963).

    Article  CAS  Google Scholar 

  8. Rieder, C.L. Cell Biol. Intern. Reps. 5, 563–573 (1981).

    Article  CAS  Google Scholar 

  9. Hughes, A. F. W. Q. J. Microsc. Sci. 91, 251–276 (1950).

    CAS  PubMed  Google Scholar 

  10. Rieder, C. L. & Cole, R. W. Curr. Biol. 10, 1067–1070 (2000).

    Article  CAS  Google Scholar 

  11. Rieder, C. L. & Cole, R. W. J. Cell Biol. 142, 1013–1022 (1998).

    Article  CAS  Google Scholar 

  12. Rieder, C. L. & Khodjakov, A. Prog. Cell Cycle Res. 3, 301–312 ( 1997).

    Article  CAS  Google Scholar 

  13. Furuno, N., den Elzen, N. & Pines, J. J. Cell Biol. 147, 295– 306 (1999).

    Article  CAS  Google Scholar 

  14. Ookata, K., Hisanaga, S-I., Okano, T., Tachibana, K. & Kishimoto, T. EMBO J. 11, 1763–1772 (1992).

    Article  CAS  Google Scholar 

  15. Hagting, A., Jackman, M., Simpson, K. & Pines, J. Curr. Biol. 9, 680–689 ( 1999).

    Article  CAS  Google Scholar 

  16. Lane, H. A. & Nigg, E. A. J. Cell Biol. 135, 1701–1713 (1996).

    Article  CAS  Google Scholar 

  17. Kumagai, A. & Dunphy, W. G. Science 273, 1377–1380 (1996).

    Article  CAS  Google Scholar 

  18. Hsu, J. Y. et al. Cell 102, 279–291 (2000).

    Article  CAS  Google Scholar 

  19. Khodjakov, A. & Rieder, C. L. J. Cell Biol. 146, 585–596 (1999).

    Article  CAS  Google Scholar 

  20. Jha, M. N., Bamburg, J. R. & Bedford, J. S. Cancer Res. 54, 5011– 5015 (1994).

    CAS  PubMed  Google Scholar 

  21. Scolnick, D. M. & Halazonetis, T. D. Nature 406, 430–434 ( 2000).

    Article  CAS  Google Scholar 

  22. Yang, J. et al. Genes Dev. 12, 2131–2143 (1998).

    Article  CAS  Google Scholar 

  23. Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. EMBO J. 17, 4127 –4138 (1998).

    Article  CAS  Google Scholar 

  24. Toyoshima, F., Moriguchi, T., Wada, A., Fukuda, M. & Nishida, E. EMBO J. 17, 2728–2735 (1998).

    Article  CAS  Google Scholar 

  25. Pines, J. & Hunter, T. J. Cell Biol. 115, 1–17 (1991).

    Article  CAS  Google Scholar 

  26. Li, J., Meyer, A. N. & Donoghue, D. J. Proc. Natl Acad. Sci. USA 94, 502–507 (1997).

    Article  CAS  Google Scholar 

  27. Iwashita, J., Hayano, Y. & Sagata, N. Proc. Natl Acad. Sci. USA 95, 4392–4397 (1998).

    Article  CAS  Google Scholar 

  28. Rieder, C. L. & Salmon, E. D. Trends Cell Biol. 8, 310–318 ( 1998).

    Article  CAS  Google Scholar 

  29. Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. & Gorbsky, G. J. J. Cell Biol. 141 , 1393–1406 (1998).

    Article  CAS  Google Scholar 

  30. Morgan, D. O. Nature Cell Biol. 1, E47–E53 (1999).

    Article  CAS  Google Scholar 

  31. Nasmyth, K., Peters, J-M. & Uhlmann, A. J. Science 288, 1379– 1384 (2000).

    Article  CAS  Google Scholar 

  32. Wheatley, S. P. et al. J. Cell Biol. 138, 385– 393 (1997).

    Article  CAS  Google Scholar 

  33. Hunt, T., Luca, F. C. & Ruderman, J. V. J. Cell Biol. 116, 707– 724 (1992).

    Article  CAS  Google Scholar 

  34. Sudakin, V. et al. Mol. Biol. Cell 6, 185– 197 (1995).

    Article  CAS  Google Scholar 

  35. Lorca, T. et al. J. Cell Sci. 102, 55– 62 (1992).

    CAS  PubMed  Google Scholar 

  36. Geley, S. & Hunt, T. J Cell Biol. (submitted).

  37. den Elzen, N. & Pines, J. J. Cell Biol (submitted).

  38. Dawson, I. A., Roth, S. & Artavanis-Tsakonas, S. J. Cell Biol. 129, 725–737 (1995).

    Article  CAS  Google Scholar 

  39. Sigrist, S. J. & Lehner, C. F. Cell 90, 671–681 (1997).

    Article  CAS  Google Scholar 

  40. Rieder, C. L. et al. Proc. Natl Acad. Sci. USA 94, 5107– 5112 (1997).

    Article  CAS  Google Scholar 

  41. Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. Cell 81, 261–268 ( 1995).

    Article  CAS  Google Scholar 

  42. Ohtoshi, A., Maeda, T., Higashi, H., Ashizawa, S. & Hatekeyama, M. Biochem. Biophys. Res. Commun. 268, 530–534 (2000).

    Article  CAS  Google Scholar 

  43. Gallant, P. & Nigg, E. A. J. Cell Biol. 117, 213–224 (1992).

    CAS  Google Scholar 

  44. Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. J. Cell Biol. 127, 1301–1310 (1994).

    Article  CAS  Google Scholar 

  45. Uhlmann, F., Wernic, D., Poupart, M-A., Koonin, E. V. & Nasmyth, K. Cell 103 , 375–386 (2000).

    Article  CAS  Google Scholar 

  46. Visintin, R., Prinz, S. & Amon, A. Science 278, 460– 463 (1997).

    Article  CAS  Google Scholar 

  47. Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M. & Peters, J-M. Mol. Biol. Cell 11, 1555–1569 ( 2000).

    Article  CAS  Google Scholar 

  48. Pfleger, C. M. & Kirschner, M. Genes Dev. 14, 655–665 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Science 282, 1721–1724 ( 1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for discussions related to this project. Some of the work discussed here was supported by funding from the Cancer Research Campaign (to J.P.) and by NIH grant no. GMS 40198 (to C.L.R.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pines, J., Rieder, C. Re-staging mitosis: a contemporary view of mitotic progression. Nat Cell Biol 3, E3–E6 (2001). https://doi.org/10.1038/35050676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing