Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design of multivalent complexes using the barnase·barstar module

Abstract

The ribonuclease barnase (12 kDa) and its inhibitor barstar (10 kDa) form a very tight complex in which all N and C termini are accessible for fusion. Here we exploit this system to create modular targeting molecules based on antibody scFv fragment fusions to barnase, to two barnase molecules in series and to barstar. We describe the construction, production and purification of defined dimeric and trimeric complexes. Immobilized barnase fusions are used to capture barstar fusions from crude extracts to yield homogeneous, heterodimeric fusion proteins. These proteins are stable, soluble and resistant to proteolysis. Using fusions with anti-p185HER2-ECD 4D5 scFv, we show that the anticipated gain in avidity from monomer to dimer to trimer is obtained and that favorable tumor targeting properties are achieved. Many permutations of engineered multispecific fusion proteins become accessible with this technology of quasi-covalent heterodimers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The concept of creating multimeric miniantibodies using heterodimeric barnase·barstar modules and scFv fragments.
Figure 2: The preparation of homogeneous mono- and multivalent proteins.
Figure 3: Assembly of multimeric proteins and their antigen binding.
Figure 4: Comparison of dissociation kinetics of monomeric, dimeric and trimeric 4D5 scFv–constructs measured by surface plasmon resonance (BIAcore).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Batra, S.K., Jain, M., Wittel, U.A., Chauhan, S.C. & Colcher, D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr. Opin. Biotechnol. 13, 603–608 (2002).

    Article  CAS  Google Scholar 

  2. Plückthun, A. & Pack, P. New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnol. 3, 83–105 (1997).

    Article  Google Scholar 

  3. Todorovska, A. et al. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J. Immunol. Methods 248, 47–66 (2001).

    Article  CAS  Google Scholar 

  4. Bennett, M.J., Schlunegger, M.P. & Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. Prot. Sci. 4, 2455–2468 (1995).

    Article  CAS  Google Scholar 

  5. Dreier, T. et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int. J. Cancer 100, 690–697 (2002).

    Article  CAS  Google Scholar 

  6. Rodrigues, M.L. et al. Engineering Fab' fragments for efficient F(ab)2 formation in Escherichia coli and for improved in vivo stability. J. Immunol. 151, 6954–6961 (1993).

    CAS  PubMed  Google Scholar 

  7. King, D.J. et al. Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 54, 6176–6185 (1994).

    CAS  PubMed  Google Scholar 

  8. Hill, C.P., Anderson, D.H., Wesson, L., DeGrado, W.F. & Eisenberg, D. Crystal structure of alpha 1: implications for protein design. Science 249, 543–546 (1990).

    Article  CAS  Google Scholar 

  9. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 543–544 (1991).

    Article  Google Scholar 

  10. Jeffrey, P.D., Gorina, S. & Pavletich, N.P. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267, 1498–1502 (1995).

    Article  CAS  Google Scholar 

  11. Pack, P. & Plückthun, A. Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry 31, 1579–1584 (1992).

    Article  CAS  Google Scholar 

  12. de Kruif, J. & Logtenberg, T. Leucine zipper dimerized bivalent and bispecific scFv antibodies from a semi-synthetic antibody phage display library. J. Biol. Chem. 271, 7630–7634 (1996).

    Article  CAS  Google Scholar 

  13. Terskikh, A.V. et al. “Peptabody”: a new type of high avidity binding protein. Proc. Natl. Acad. Sci. USA 94, 1663–1668 (1997).

    Article  CAS  Google Scholar 

  14. Yazaki, P.J. & Wu, A.M. Construction and characterization of minibodies for imaging and therapy of colorectal carcinomas. Meth. Mol. Biol. 207, 351–364 (2003).

    CAS  Google Scholar 

  15. Carter, P. Bispecific human IgG by design. J. Immunol. Methods 248, 7–15 (2001).

    Article  CAS  Google Scholar 

  16. Hartley, R.W. Barnase-barstar interaction. Methods Enzymol. 341, 599–611 (2001).

    Article  CAS  Google Scholar 

  17. Schreiber, G. Methods for studying the interaction of barnase with its inhibitor barstar. Methods Mol. Biol. 160, 213–226 (2001).

    CAS  PubMed  Google Scholar 

  18. Schreiber, G. & Fersht, A.R. Rapid, electrostatically assisted association of proteins. Nat. Struct. Biol. 3, 427–431 (1996).

    Article  CAS  Google Scholar 

  19. Green, N.M. Avidin and streptavidin. Methods Enzymol. 184, 51–67 (1990).

    Article  CAS  Google Scholar 

  20. Guillet, V., Lapthorn, A., Hartley, R.W. & Mauguen, Y. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure 1, 165–177 (1993).

    Article  CAS  Google Scholar 

  21. Buckle, A.M., Schreiber, G. & Fersht, A.R. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution. Biochemistry 33, 8878–89 (1994).

    Article  CAS  Google Scholar 

  22. Eigenbrot, C., Randal, M., Presta, L., Carter, P. & Kossiakoff, A.A. X-ray crystal structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. J. Mol. Biol. 229, 969–995 (1993).

    Article  CAS  Google Scholar 

  23. Willuda, J. et al. Tumor targeting of mono-, di-, and tetravalent anti-p185(HER-2) miniantibodies multimerized by self-associating peptides. J. Biol. Chem. 276, 14385–14392 (2001).

    Article  CAS  Google Scholar 

  24. Slamon, D. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    Article  CAS  Google Scholar 

  25. Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  26. Waibel, R. et al. Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat. Biotechnol. 17, 897–901 (1999).

    Article  CAS  Google Scholar 

  27. Deyev, S.M., Yazynin, S.A., Kuznetsov, D.A., Jukovich, M. & Hartley, R.W. Ribonuclease-charged vector for facile direct cloning with positive selection. Mol. Gen. Genet. 259, 379–382 (1998).

    Article  CAS  Google Scholar 

  28. Hartley, R.W. Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol. 202, 913–915 (1988).

    Article  CAS  Google Scholar 

  29. Hartley, R.W. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem. Sci. 14, 450–454 (1989).

    Article  CAS  Google Scholar 

  30. Wörn, A. & Plückthun, A. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305, 989–1010 (2001).

    Article  Google Scholar 

  31. Wörn, A. & Plückthun, A. An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly. FEBS Lett. 427, 357–361 (1998).

    Article  Google Scholar 

  32. Lindner, P. et al. Specific detection of his-tagged proteins with recombinant anti-His tag scFv-phosphatase or scFv-phage fusions. Biotechniques 22, 140–149 (1997).

    Article  CAS  Google Scholar 

  33. Yazaki, P.J. et al. Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and T84.66 minibody: Comparison to radioiodinated fragments. Bioconjugate Chem. 12, 220–228 (2001).

    Article  CAS  Google Scholar 

  34. Nielsen, U.B., Adams, G.P., Weiner, L.M. & Marks, J.D. Targeting of bivalent anti-ErbB2 antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. 60, 6434–6440 (2000).

    CAS  Google Scholar 

  35. Casey, J.L. et al. Dosimetric evaluation and radioimmunotherapy of anti-tumour multivalent Fab' fragments. Br. J. Cancer 81, 972–980 (1999).

    Article  CAS  Google Scholar 

  36. Tahtis, K. et al. Biodistribution properties of (111)indium-labeled C-functionalized trans-cyclohexyl diethylenetriaminepentaacetic acid humanized 3S193 diabody and F(ab′)(2) constructs in a breast carcinoma xenograft model. Clin. Cancer Res. 7, 1061–1072 (2001).

    CAS  PubMed  Google Scholar 

  37. Trejtnar, F. & Laznicek, M. Analysis of renal handling of radiopharmaceuticals. Q. J. Nucl. Med. 46, 181–194 (2002).

    CAS  PubMed  Google Scholar 

  38. Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A. Expressing antibodies in Escherichia coli. in Antibody Engineering, edn.2 (ed. Borrebaeck, C.A.K.) 229–266 (Oxford University Press, Oxford, 1995).

    Google Scholar 

  39. Knappik, A. & Plückthun, A. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 8, 81–89 (1995).

    Article  CAS  Google Scholar 

  40. Hartley, R.W. Directed mutagenesis and barnase-barstar recognition. Biochemistry 32, 5978–5984 (1993).

    Article  CAS  Google Scholar 

  41. Bass, S., Gu, Q. & Christen, A. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J. Bacteriol. 178, 1154–1161 (1996).

    Article  CAS  Google Scholar 

  42. Miller, K. et al. Design, construction, and in vitro analyses of multivalent antibodies. J. Immunol. 170, 4854–4861 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jörg Willuda for discussions during the initial phase of this project, Annemarie Honegger for molecular modeling, Stephen F. Marino for help and comments, and Frank Bootz and Lydie Chané-Favre for help in the immunogenicity experiments. The work was supported by grants from, among others, the Swiss National Science Foundation (no. 7UPJ062274), the Russian Foundation of Basic Research (no. 01-04-49450) and the Russian Science Support Foundation (no. 2077.2003.4) and PCB RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergey M Deyev or Andreas Plückthun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deyev, S., Waibel, R., Lebedenko, E. et al. Design of multivalent complexes using the barnase·barstar module. Nat Biotechnol 21, 1486–1492 (2003). https://doi.org/10.1038/nbt916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing