Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering of a macromolecular scaffold to develop specific protease inhibitors

Abstract

The specific inhibition of serine proteases, which are crucial switches in many physiologically important processes, is of value both for basic research and for therapeutic applications. Ecotin, a potent macromolecular inhibitor of serine proteases of the S1A family, presents an attractive scaffold to engineer specific protease inhibitors because of its large inhibitor-protease interface. Using synthetic shuffling in combination with a restricted tetranomial diversity, we created ecotin libraries that are mutated at all 20 amino acid residues in the binding interface. The efficacy of these libraries was demonstrated against the serine protease plasma kallikrein (Pkal). Competitive phage display selection yielded a Pkal inhibitor with an apparent dissociation equilibrium constant (Ki*) of 11 pM, whereas Ki* values for related proteases (such as Factor Xa (FXa), Factor XIa (FXIa), urokinase-type plasminogen activator (uPA), thrombin, and membrane-type serine protease 1 (MT-SP1)) were four to seven orders of magnitude higher. The adaptability of the scaffold was demonstrated by the isolation of inhibitors to two additional serine proteases, MT-SP1/matriptase and Factor XIIa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positioning of ecotin surface loops in crystal structure and during synthetic shuffling.
Figure 2: Analysis of the development of ecotin to inhibit Pkal preferentially over FXIa for either pools of variants during sequential rounds of phage display selection or individual variants after seven rounds of selection.
Figure 3: Graphic representation of the Ki* values determined of ecotin wt and ecotin-Pkal for ten proteases.
Figure 4: Graphic representation of the Ki* values determined of ecotin wt, MT-6, XII-18 and ecotin-Pkal for four highly related proteases.

Similar content being viewed by others

References

  1. Rawlings, N.D. Introduction: family S1 of trypsin. in Handbook of Proteolytic Enzymes (eds. Barrett, A.J., Rawlings, N.D. & Woessner, J.F.) 5–12 (Academic Press, London, UK, 1998).

    Google Scholar 

  2. Rawlings, N.D., O'Brien, E.A. & Barrett, A.J. MEROPS: the protease database. Nucleic Acids Res. 30, 343–346 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhatt, A.S. et al. Quantification of membrane type serine protease 1 (MT-SP1) in transformed and normal cells. Biol. Chem. 384, 257–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Hooper, J.D., Clements, J.A., Quigley, J.P. & Antalis, T.M. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J. Biol. Chem. 276, 857–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Yousef, G.M. & Diamandis, E.P. Human tissue kallikreins: a new enzymatic cascade pathway? Biol. Chem. 383, 1045–1057 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Takeuchi, T., Shuman, M.A. & Craik, C.S. Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc. Natl. Acad. Sci. USA 96, 11054–11061 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin, C.Y., Anders, J., Johnson, M., Sang, Q.A. & Dickson, R.B. Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J. Biol. Chem. 274, 18231–18236 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, M.G. et al. Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 49, 420–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Oberst, M.D. et al. Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin. Cancer Res. 8, 1101–1107 (2002).

    CAS  PubMed  Google Scholar 

  10. Kang, J.Y. et al. Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res. 63, 1101–1105 (2003).

    CAS  PubMed  Google Scholar 

  11. Dhanasekaran, S.M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Catalona, W.J. et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med. 324, 1156–1161 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Hoffman, B.R. et al. Immunofluorometric quantitation and histochemical localisation of kallikrein 6 protein in ovarian cancer tissue: a new independent unfavourable prognostic biomarker. Br. J. Cancer 87, 763–771 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. List, K. et al. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21, 3765–3779 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Ebnet, K. et al. Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J. 14, 4230–4239 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanderson, P.E. Small, noncovalent serine protease inhibitors. Med. Res. Rev. 19, 179–197 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Leung, D., Abbenante, G. & Fairlie, D.P. Protease inhibitors: current status and future prospects. J. Med. Chem. 43, 305–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Perona, J.J., Tsu, C.A., Craik, C.S. & Fletterick, R.J. Crystal structures of rat anionic trypsin complexed with the protein inhibitors APPI and BPTI. J. Mol. Biol. 230, 919–933 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Chung, C.H., Ives, H.E., Almeda, S. & Goldberg, A.L. Purification from Escherichia coli of a periplasmic protein that is a potent inhibitor of pancreatic proteases. J. Biol. Chem. 258, 11032–11038 (1983).

    CAS  PubMed  Google Scholar 

  20. Gillmor, S.A., Takeuchi, T., Yang, S.Q., Craik, C.S. & Fletterick, R.J. Compromise and accommodation in ecotin, a dimeric macromolecular inhibitor of serine proteases. J. Mol. Biol. 299, 993–1003 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. McGrath, M.E., Erpel, T., Bystroff, C. & Fletterick, R.J. Macromolecular chelation as an improved mechanism of protease inhibition: structure of the ecotin-trypsin complex. EMBO J. 13, 1502–1507 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, S.X., Esmon, C.T. & Fletterick, R.J. Crystal structure of thrombin-ecotin reveals conformational changes and extended interactions. Biochemistry 40, 10038–10046 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Eggers, C.T., Wang, S.X., Fletterick, R.J. & Craik, C.S. The role of ecotin dimerization in protease inhibition. J. Mol. Biol. 308, 975–991 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Seymour, J.L. et al. Ecotin is a potent anticoagulant and reversible tight-binding inhibitor of Factor Xa. Biochemistry 33, 3949–3958 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Ulmer, J.S., Lindquist, R.N., Dennis, M.S. & Lazarus, R.A. Ecotin is a potent inhibitor of the contact system proteases Factor XIIa and plasma kallikrein. FEBS Lett. 365, 159–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Colman, R.W. & Schmaier, A.H. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood 90, 3819–3843 (1997).

    CAS  PubMed  Google Scholar 

  27. Selvarajan, S., Lund, L.R., Takeuchi, T., Craik, C.S. & Werb, Z. A plasma kallikrein–dependent plasminogen cascade required for adipocyte differentiation. Nat. Cell Biol. 3, 267–275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dela Cadena, R.A. et al. Inhibition of plasma kallikrein prevents peptidoglycan-induced arthritis in the Lewis rat. FASEB J. 9, 446–452 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Stadnicki, A. et al. Specific inhibition of plasma kallikrein modulates chronic granulomatous intestinal and systemic inflammation in genetically susceptible rats. FASEB J. 12, 325–333 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Dennis, M.S., Herzka, A. & Lazarus, R.A. Potent and selective Kunitz domain inhibitors of plasma kallikrein designed by phage display. J. Biol. Chem. 270, 25411–25417 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Markland, W., Ley, A.C. & Ladner, R.C. Iterative optimization of high-affinity protease inhibitors using phage display. 2. Plasma kallikrein and thrombin. Biochemistry 35, 8058–8067 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Ness, J.E. et al. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat. Biotechnol. 20, 1251–1255 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Bogan, A.A. & Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, S.Q. & Craik, C.S. Engineering bidentate macromolecular inhibitors for trypsin and urokinase-type plasminogen activator. J. Mol. Biol. 279, 1001–1011 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Laboissiere, M.C. et al. Computer-assisted mutagenesis of ecotin to engineer its secondary binding site for urokinase inhibition. J. Biol. Chem. 277, 26623–26631 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. McBride, J.D., Freeman, N., Domingo, G.J. & Leatherbarrow, R.J. Selection of chymotrypsin inhibitors from a conformationally-constrained combinatorial peptide library. J. Mol. Biol. 259, 819–827 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Dennis M.S. & Lazarus R.A. Kunitz domain inhibitors of tissue factor-Factor VIIa. I. Potent inhibitors selected from libraries by phage display. J. Biol. Chem. 269, 22129–22136 (1994).

    CAS  PubMed  Google Scholar 

  39. Yang, S.Q., Wang, C.I., Gillmor, S.A., Fletterick, R.J. & Craik, C.S. Ecotin: a serine protease inhibitor with two distinct and interacting binding sites. J. Mol. Biol. 279, 945–957 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hecker, K.H. & Rill, R.L. Error analysis of chemically synthesized polynucleotides. Biotechniques 24, 256–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Chung, D.W., Fujikawa, K., McMullen, B.A. & Davie, E.W. Human plasma prekallikrein, a zymogen to a serine protease that contains four tandem repeats. Biochemistry 25, 2410–2417 (1986).

    Article  CAS  PubMed  Google Scholar 

  42. OASIS investigators. Effects of recombinant hirudin (lepirudin) compared with heparin on death, myocardial infarction, refractory angina, and revascularisation procedures in patients with acute myocardial ischaemia without ST elevation: a randomised trial. Lancet 353, 429–438 (1999).

  43. Cappello, M., Vlasuk, G.P., Bergum, P.W., Huang, S. & Hotez, P.J. Ancylostoma caninum anticoagulant peptide: a hookworm-derived inhibitor of human coagulation Factor Xa. Proc. Natl. Acad. Sci. USA 92, 6152–6156 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Laroche, Y. et al. Recombinant staphylokinase variants with reduced antigenicity due to elimination of B-lymphocyte epitopes. Blood 96, 1425–1432 (2000).

    CAS  PubMed  Google Scholar 

  45. Barbas, C.F., Kang, A.S., Lerner, R.A. & Benkovic, S.J. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stoop, A.A., Jespers, L., Lasters, I., Eldering, E. & Pannekoek, H. High-density mutagenesis by combined DNA shuffling and phage display to assign essential amino acid residues in protein-protein interactions: application to study structure-function of plasminogen activation inhibitor 1 (PAI-I). J. Mol. Biol. 301, 1135–1147 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Morrison, J.F. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim. Biophys. Acta 185, 269–286 (1969).

    Article  CAS  PubMed  Google Scholar 

  48. Kraulis, P.J. MolScript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  49. Fujikawa, K., Chung, D.W., Hendrickson, L.E. & Davie, E.W. Amino acid sequence of human Factor XI, a blood coagulation factor with four tandem repeats that are highly homologous with plasma prekallikrein. Biochemistry 25, 2417–2424 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Eggers for many helpful discussions regarding the data and the manuscript. This work was supported by a TALENT-stipend from the Netherlands Organization for Scientific Research to A.A.S. and grant CA72006 from the National Institutes of Health to C.S.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S Craik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoop, A., Craik, C. Engineering of a macromolecular scaffold to develop specific protease inhibitors. Nat Biotechnol 21, 1063–1068 (2003). https://doi.org/10.1038/nbt860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing