Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Fetal gene transfer by transuterine injection of cationic liposome–DNA complexes

Abstract

In utero injection of cationic liposome–DNA complexes (CLDCs) containing chloramphenicol acetyltransferase, β-galactosidase (β-gal), or human granulocyte colony-stimulating factor (hG-CSF) expression plasmids produced high-level gene expression in fetal rats. Tissues adjacent to the injection site exhibited the highest levels of gene expression. Chloramphenicol acetyltransferase expression persisted for at least 14 days and was reexpressed following postnatal reinjection of CLDCs. Intraperitoneal administration of the hG-CSF gene produced high serum hG-CSF levels. X-gal staining demonstrated widespread β-gal expression in multiple fetal tissues and cell types. No toxic or inflammatory responses were observed, nor was there evidence of fetal–maternal or maternal–fetal gene transfer, suggesting that CLDCs may provide a useful alternative to viral vectors for in utero gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (A) Chloramphenicol acetyltransferase activity in liver and spleen extracts from fetal rats after receiving a single i.p. injection of either 12.5 μg (0.25 μg/μl) or 50 μg (1.0 μg/μl) of a CMV-CAT expression plasmid, either complexed to 50 or 200 nmol of DOTIM:cholesterol liposomes, respectively, or as DNA alone.
Figure 2: Chloramphenicol acetyltransferase activity in lung and spleen extracts from young rats that had initially received a single i.p. in utero injection of 25 μg (0.5 μg/μl) of a CMV-CAT expression plasmid complexed to 100 nmol DOTIM:cholesterol liposomes.
Figure 3: Chloramphenicol acetyltransferase activity in brain, lung, and liver extracts from groups of fetal rats after receiving a single i.p. or i.t. in utero injection of 25 μg (0.5 μg/μl) of a CMV-CAT expression plasmid complexed to 100 nmol DOTIM:cholesterol liposomes, or a single i.c. injection of 10 μg (0.5 μg/μl) of a CMV-CAT expression plasmid complexed to 40 nmol DOTIM:cholesterol liposomes.
Figure 4: PCR amplification of DNA from gonadal tissues.
Figure 5: (A) Peritoneal surface of a fetus harvested 24 h after a single i.p. injection of 25 μg of a CMV—gal expression plasmid complexed to 100 nmol DOTIM:cholesterol liposomes.
Figure 6

Similar content being viewed by others

References

  1. Ledley, F.D. Prenatal application of somatic gene therapy. Obstet Gynecol. Clin. North Am. 3, 611–620 ( 1993).

    Google Scholar 

  2. Hatzoglou, M. et al. Hepatic gene transfer in animals using retroviruses containing the promoter from the gene for phosphoenolpyruvate carboxykinase. J. Biol. Chem. 265, 17285–17293 (1990).

    CAS  PubMed  Google Scholar 

  3. Clapp, D.W., Dumenco, L.L., Hatzoglou, M. & Gerson, S.L. Fetal liver hematopoietic stem cells as a target for in utero retroviral gene transfer. Blood 78, 1132– 1139 (1991).

    CAS  PubMed  Google Scholar 

  4. Pitt, B.R. et al. Retrovirus-mediated gene transfer in lungs of living fetal sheep. Gene Ther. 5, 344–350 ( 1995).

    Google Scholar 

  5. Hatzoglou, M., Moorman, A. & Lamers, W. Persistent expression of genes transferred in the fetal rat liver via retroviruses. Somat. Cell Mol. Genet. 4, 265–278 (1995).

    Article  Google Scholar 

  6. Kay, M.A. et al. Hepatic gene therapy: persistent expression of human alpha 1-antitrypsin in mice after direct gene delivery in vivo. Hum. Gene Ther. 3, 641–647 (1992).

    Article  CAS  Google Scholar 

  7. Fleischman, R.A., Custer, R.P. & Mintz B. Totipotent hematopoietic stem cells: normal self-renewal and differentiation after transplantation between mouse fetuses. Cell 30, 351– 359 (1982).

    Article  CAS  Google Scholar 

  8. Toles, J.F., Chui, D.H., Belbeck, L.W., Starr, E. & Barker, J.E. Hematopoietic stem cells in murine embryonic yolk sac and peripheral blood. Proc. Natl. Acad. Sci. USA 86, 7456–7459 ( 1989).

    Article  CAS  Google Scholar 

  9. Debs, R. et al. Extended, high level transgene expression in rodent lung cells ex vivo. Am. J. Respir. Cell. Mol. Biol. 7, 406– 413 (1992).

    Article  CAS  Google Scholar 

  10. Tsukamoto, M., Ochiya, T., Yoshida, S., Sugimura, T. & Terada M. Gene transfer and expression in progeny after intravenous DNA injection into pregnant mice. Nat. Genet. 9, 243–248 (1995).

    Article  CAS  Google Scholar 

  11. Alton, E,W. et al. Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat. Genet. 5, 135–142 (1993).

    Article  CAS  Google Scholar 

  12. Hyde, S.C. et al. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 362, 250– 255 (1993).

    Article  CAS  Google Scholar 

  13. Canonico, A.E., Conary, J.T., Meyrick, B.O. & Brigham, K.L. Aerosol and intravenous transfection of human alpha 1-antitrypsin gene to lungs of rabbits. Am. J. Respir. Cell. Mol. Biol. 10 , 24–29 (1994).

    Article  CAS  Google Scholar 

  14. Sorscher, E.J. et al. Gene therapy for cystic fibrosis using cationic liposome mediated gene transfer: a phase I trial of safety and efficacy in the nasal airway. Hum. Gene Ther. 5, 1259– 1277 (1994).

    Article  CAS  Google Scholar 

  15. Nabel, E.G., Plautz, G. & Nabel, G.J. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 249, 1285 –1288 (1990).

    Article  CAS  Google Scholar 

  16. McCray, P.B. et al. Adenoviral-mediated gene transfer to fetal pulmonary epithelia in vitro and in vivo. J. Clin. Invest. 95 , 2620–2631 (1995).

    Article  CAS  Google Scholar 

  17. Zhu, N., Liggitt, D., Liu, Y. & Debs, R. Systemic gene expression after intravenous DNA delivery into adult mice. Science 261, 209–211 (1993).

    Article  CAS  Google Scholar 

  18. Philip, R., Liggitt, D., Philip, M., Dazin, P. & Debs, R.J. In vivo gene delivery: efficient transfection of T lymphocytes in adult mice. J. Biol Chem. 268, 16087– 16090 (1993).

    CAS  PubMed  Google Scholar 

  19. Kawakami, M. et al. Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76, 1962– 1964 (1990).

    CAS  PubMed  Google Scholar 

  20. Ichikawa, T., Kuwaki, T., Tachibana, K., Yanagida, M. & Matsuki, S. A highly sensitive enzyme immunoassay for G-CSF in human plasma. Exp. Hematol. 23, 192–195 (1995).

    CAS  PubMed  Google Scholar 

  21. Liu, Y. et al. Cationic liposome-mediated intravenous gene delivery in mice. J. Biol. Chem. 27, 24864–24870 (1995).

    Article  Google Scholar 

  22. Gilgenkrantz, H. et al. Transient expression of genes transferred in vivo into heart using first-generation adenoviral vectors: role of the immune response. Hum. Gene Ther. 6, 1265–1274 (1995).

    Article  CAS  Google Scholar 

  23. Walter, J., You, Q., Hagstrom, JN., Sands, M. & High, K.A. Successful expression of human factor IX following repeat administration of adenoviral vector in mice. Proc. Natl. Acad. Sci. USA 93, 3056–3061 (1996).

    Article  CAS  Google Scholar 

  24. Thierry, A.R. et al. Systemic gene therapy: biodistribution and long-term expression of a transgene in mice. Proc. Natl Acad. Sci. USA 92, 9742–9746 (1995).

    Article  CAS  Google Scholar 

  25. Cooper, M.J. et al. Safety-modified episomal vectors for human gene therapy. Proc. Natl. Acad. Sci. USA 94, 6450– 6455 (1997).

    Article  CAS  Google Scholar 

  26. Hong, K., Zheng, W., Baker, A., & Papahadjopoulos, D. Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett. 400, 233–237 (1997).

    Article  CAS  Google Scholar 

  27. Templeton, N.S. et al. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15, 647–652 (1997).

    Article  CAS  Google Scholar 

  28. Stewart, M.J. et al. Gene transfer in vivo with DNA–liposome complexes: safety and acute toxicity in mice. Hum. Gene Ther. 3, 267–275 (1992).

    Article  CAS  Google Scholar 

  29. Canonico, A.E., Plitman, J.D., Conary, J.T., Meyrick, B.O. & Brigham K.L. No lung toxicity after repeated aerosol or intravenous delivery of plasmid–cationic liposome complexes. J. Appl. Physiol. 77, 415– 419 (1994).

    Article  CAS  Google Scholar 

  30. Vincent, M.C. et al. Adenovirus-mediated gene transfer to the respiratory tract of fetal sheep in utero. Hum. Gene Ther. 8, 1019– 1028 (1995).

    Article  Google Scholar 

  31. Yang, Y. et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411 (1994).

    Article  CAS  Google Scholar 

  32. Sekhon, H.S. & Larson, J.E. In utero gene transfer into the pulmonary epithelium. Nat. Med. 1, 1201– 1203 (1995).

    Article  CAS  Google Scholar 

  33. Larson, J.E., Morrow, S.L., Happel, L., Sharp, J.F. & Cohen, J.C. Reversal of cystic fibrosis phenotype in mice by gene therapy in utero. Lancet 349, 619– 620 (1997).

    Article  CAS  Google Scholar 

  34. Halbert, C.L. et al. Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence, and readministration. J. Virol. 71, 5932–5941 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kafri, T. et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc. Natl. Acad. Sci. USA 95, 11377– 11382 (1998).

    Article  CAS  Google Scholar 

  36. Iwamoto, H.S., Trapnell B.C., McConnell C.J., Daugherty, C. & Whitsett, J.A. Pulmonary inflammation associated with repeated, prenatal exposure to an E1, E3-deleted adenoviral vector in sheep. Gene Ther. 6, 98– 106 (1999).

    Article  CAS  Google Scholar 

  37. Ketteler, M., Noble, N.A. & Border, W.A. Increased expression of transforming growth factor-beta in renal disease. Curr. Opin. Nephrol. Hypertens. 3 , 446–452 (1994).

    Article  CAS  Google Scholar 

  38. Bartke, A. et al. Neuroendocrine and reproductive consequences of overexpression of growth hormone in transgenic mice. Proc. Soc. Exp. Biol. Med. 206, 345–359 (1994).

    Article  CAS  Google Scholar 

  39. Holtzman, D.M., Sheldon, R.A., Jaffe, W., Cheng, Y. & Ferriero, D.M. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury. Ann. Neurol. 39, 114–122 (1996).

    Article  CAS  Google Scholar 

  40. Low, J.A. The relationship of asphyxia in the mature fetus to long-term neurologic function. Clin. Obstet. Gynecol. 36, 82– 90 (1993).

    Article  CAS  Google Scholar 

  41. Paneth, N. & Stark, R.I. Cerebral palsy and mental retardation in relation to indicators of perinatal asphyxia. An epidemiologic overview. Am. J. Obstet. Gynecol. 147, 960– 966 (1983).

    Article  CAS  Google Scholar 

  42. Mason, C.A. et al. Gene transfer in utero biologically engineers a patent ductus arteriosus in lambs by arresting fibronectin-dependent neointimal formation. Nat. Med. 5, 176–182 ( 1999).

    Article  CAS  Google Scholar 

  43. Kurth, R. Risk potential of the chromosomal insertion of foreign DNA. Ann. NY Acad. Sci. 772, 140–151 (1995).

    Article  CAS  Google Scholar 

  44. Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular cloning: a laboratory manual 2nd edn (eds Ford, N., Nolan, C. & Ferguson, M.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; 1989).

    Google Scholar 

  45. Solodin, I. et al. A novel series of amphiphilic imidazolinium compounds for in vitro and in vivo gene delivery. Biochemistry 34, 13537–13544 (1995).

    Article  CAS  Google Scholar 

  46. Mounkes, L. et al. In vivo transfection of animals by intravenous injection of cationic liposome:DNA complexes. J. Lipid Res. 7, 161–176 (1997).

    CAS  Google Scholar 

  47. Olson, F., Hunt, C.A., Szoka, F.C., Vail, W.J. & Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta 557, 9–20 ( 1979).

    Article  CAS  Google Scholar 

  48. Johnston, R.F., Pickett, S.L. & Barker, D.L. Autoradiography using storage phosphor technology. Electrophoresis 11, 355– 360 (1990).

    Article  CAS  Google Scholar 

  49. Bout, A., Valerio, D. & Scholte, B.J. In vivo transfer and expression of the lacZ gene in the mouse lung. Exp. Lung Res. 19, 193– 202 (1993).

    Article  CAS  Google Scholar 

  50. Gaensler, K.M., Kitamura, M. & Kan, Y.W. Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human beta-globin locus in transgenic mice. Proc. Natl Acad. Sci. USA 90, 11381–11385 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DK45917, DK49550, and HL53762. We thank Patrick Lewis for performing the hG-CSF assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin M.L. Gaensler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaensler, K., Tu, G., Bruch, S. et al. Fetal gene transfer by transuterine injection of cationic liposome–DNA complexes. Nat Biotechnol 17, 1188–1192 (1999). https://doi.org/10.1038/70729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing