Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Fertile, Transgenic Oat Plants

Abstract

Transgenic friable, embryogenic oat callus cultures were selected for phosphinothricin (PPT) resistance following microprojectile bombardment with a plasmid encoding the Streptomyces hygroscopicus bar gene and the Escherichia coli uidA gene. From three microprojectile bombardment experiments, 111 PPT-resistant tissue cultures were shown to be transgenic based on Southern blot analysis. From one to more than 20 copies of the transgenes were integrated in the genome of the PPT-resistant tissue cultures. Coexpression of β-glucuronidase (GUS) activity due to expression of uidA was detected in 75% of the transgenic tissue cultures. Plants were regenerated from 38 of the 111 transgenic tissue cultures. Regenerated plants generally exhibited male sterility; however, more than 30 plants regenerated from one transgenic tissue culture were fully fertile. GUS activity in the seed of fertile regenerated plants and PPT resistance in progeny of these plants cosegregated with bar and uidA sequences demonstrating stable inheritance of the transgenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hohn, B., Koukolikola-Nicola, Z., Bakkeren, G. and Grimsley, N. 1989. Agrobacterium-mediated gene transfer to monocots and dicots. Genome 31: 987–992.

    Article  CAS  Google Scholar 

  2. Klee, H., Horsch, R. and Rogers, S. 1987. Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38: 467–486.

    Article  CAS  Google Scholar 

  3. Potrykus, I., Paszkowski, J., Saul, N.W., Negrutiu, I. and Shillito, R.D. 1987. Direct gene transfer to plants: facts and future, p. 298–302. In: Plant Tissue and Cell Culture. Green, C.E., Somers, D.A., Hackett, W.P. and Biesboer, D.D. (Eds.). Alan R. Liss, Inc., N.Y.

    Google Scholar 

  4. Reich, T.J., Iyer, V.N. and Miki, B.L. 1986. Efficient transformation of alfalfa protoplasts by intranuclear microinjection of Ti plasmids. Bio/Technology 4: 1001–1004.

    Article  CAS  Google Scholar 

  5. Neuhaus, G., Spangenberg, O., Mittelstenschied, O. and Schweiger, H.G. 1987. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet. 75: 30–36.

    Article  Google Scholar 

  6. Kaeppler, H.F., Somers, D.A., Rines, H.W. and Cockburn, A.F. 1992. Silicon carbide fiber-mediated stable transformation of plant cells. Theor. Appl. Genet. 84: 560–566.

    Article  CAS  PubMed  Google Scholar 

  7. Klein, T.M., Wolf, E.D., Wu, R. and Sandford, J.C. 1987. High velocity microprojectiles for delivery of nucleic acids into living cells. Nature 327: 70–73.

    Article  CAS  Google Scholar 

  8. Klein, T.M., Arentzen, R., Lewis, P.A. and Fitzpatrick-McElligott, S. 1992. Transformation of microbes, plants and animals by particle bombardment. Bio/Technology 10: 286–291.

    CAS  Google Scholar 

  9. Christou, P. 1992. Genetic transformation of crop plants using microprojectile bombardment. The Plant Journal. 2: 275–281.

    Article  CAS  Google Scholar 

  10. Klein, T.M., Kornstein, L., Sanford, J.C. and Fromm, M.E. 1989. Genetic transformation of maize cells by particle bombardment. Plant Physiol. 91: 440–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spencer, T.M., Gordon-Kamm, W.J., Daines, R.J., Start, W.G. and Lemaux, P.G. 1990. Bialaphos selection of stable transformants from maize cell cultures. Theor. Appl. Genet. 79: 625–631.

    Article  CAS  PubMed  Google Scholar 

  12. Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. and Klein, T.M. 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.

    CAS  Google Scholar 

  13. Gordon-Kamm, W.J., Spencer, T.M., Mangano, M.L., Adams, T.R., et al. 1990. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walters, D.A., Vetsch, C.S., Potts, D.E. and Lundquist, R.C. 1992. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18: 189–200.

    Article  CAS  PubMed  Google Scholar 

  15. Christou, P., Ford, T.L. and Kofron, M. 1991. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9: 957–962.

    Article  Google Scholar 

  16. Vasil, V., Castillo, A.M., Fromm, M.E. and Vasil, I.K. 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10: 667–674.

    CAS  Google Scholar 

  17. Bregitzer, P., Bushnell, W.R., Rines, H.W. and Somers, D.A. 1991. Callus formation and plant regeneration from somatic embryos of oat (Avena sativa L.). Plant Cell Rep. 10: 243–246.

    Article  CAS  PubMed  Google Scholar 

  18. Thompson, C.J., Movva, N.R., Tizard, R., Crameri, R., Davies, J.E., Lauwereys, M. and Botterman, J. 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6: 2519–2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bregitzer, P., Somers, D.A. and Rines, H.W. 1989. Development and characterization of friable, embryogenic oat callus. Crop Sci. 29: 798–803.

    Article  Google Scholar 

  20. Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molec. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

  21. Kyozuka, J., Fujimoto, H., Izawa, T. and Shimamoto, K. 1991. Anaerobic induction and tissue specific expression of maize Adh1 promoter in transgenic rice plants and their progeny. Mol. Gen. Genet. 228: 40–48.

    Article  CAS  PubMed  Google Scholar 

  22. Kosugi, S., Oshashi, Y., Nakajima, K. and Arai, H. 1990. An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppressed endogenous β-glucuronidase activity. Plant Sci. 70: 133–140.

    Article  CAS  Google Scholar 

  23. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  CAS  PubMed  Google Scholar 

  24. McCoy, T.J., Phillips, R.L. and Rines, H.W. 1982. Cytogenetic analysis of plants regenerated from oat (Avena sativa) tissue culture: High frequency of partial chromosome loss. Can. J. Genet. Cytol. 24: 37–50.

    Article  Google Scholar 

  25. Rines, H.W. and Luke, H.H. 1985. Selection and regeneration of toxin-insensitive plants from tissue cultures of oat (Avena sativa) susceptible to Helminthosporium victoriae. Theor. Appl. Genet. 71: 16–21.

    Article  CAS  PubMed  Google Scholar 

  26. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497.

    Article  CAS  Google Scholar 

  27. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. (USA) 81: 8014–8018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somers, D., Rines, H., Gu, W. et al. Fertile, Transgenic Oat Plants. Nat Biotechnol 10, 1589–1594 (1992). https://doi.org/10.1038/nbt1292-1589

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1292-1589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing