Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Hyperthermostable Variants of a Highly Thermostable Alpha-Amylase

Abstract

Genetic screening at temperatures between 70–80°C far exceeds the range of growth of most bacteria, and is not applicable to isolate easily thermostable protein variants. We describe a temperature shift protocol and an in vivo screening method which allowed us to identify a hyperthermostable variant of the thermostable α-amylase from Bacillus licheniformis. Our strategy was to select, after hydroxylamine mutagenesis, an intragenic suppressor mutation which overcomes a mutation leading to a thermolabile enzyme. Sequence analysis of the mutated gene revealed only one change in the amino acid sequence, substituting a valine for alanine at position 209. This single amino acid replacement increased the half-life of the protein at 90°C by a factor of two to three relative to the wild-type enzyme. When this substitution was combined with another stabilizing substitution (H133Y) we described previously, the stabilizing effects were additive. The half-life of the new protein was about 12 hours at 90°C, corresponding to a nine to ten-fold increase over the wild-type enzyme and the industrial Bacillus licheniformis α-amylase Termamyl®. These mutations are located in a predicted folding domain of the protein which appears crucial in determining thermal stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yuuki, T., Nomura, T., Tezuka, H., Tsuboi, A., Yamagata, H., Tsukagoshi, N. and Udaka, S. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable α-amylase of Bacillus licheniformis: Comparison of the amino acid sequences of the three bacterial liquefying α-amylase deduced from the DNA sequences. J. Biochem. 98: 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  2. Matsumura, M., Becktel, W.J., Levitt, M. and Matthews, B.W. 1989. Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc. Natl. Acad. Sci. USA 86: 6562–6566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wetzel, R., Perry, L.J., Baase, W.A. and Becktel, W. 1988. Disulfide bonds and thermal stability in T4 lysosyme. Proc. Natl. Acad. Sci. USA 85: 401–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pantoliano, M.W., Ladner, R.C., Bryan, P.N., Rollence, M.L., Wood, J.F. and Poulos, T.L. 1987. Protein engineering of subtilisin BPN′: enhanced stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry 26: 2077–2082.

    Article  CAS  PubMed  Google Scholar 

  5. Sauer, R.T., Hehir, K., Stearman, R.S., Weiss, M.A., Jeitler-Nilsson, A., Suchanek, E.G. and Pabo, C.O. 1986. An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of lambda represser. Biochemistry 25: 5992–5998.

    Article  CAS  PubMed  Google Scholar 

  6. Nicholson, H., Becktel, W.J. and Matthews, B.W. 1988. Enhanced protein thermostability from designed mutations that interact with α-helix dipoles. Nature 336: 651–656.

    Article  CAS  PubMed  Google Scholar 

  7. Hecht, M.H., Sturtevant, J.M. and Sauer, R.T. 1986. Stabilization of lambda represser against thermal denaturation by site-directed Gly/Ala changes in α-helix 3. Proteins Struct. Funct. Genet. 1: 43–46.

    Article  CAS  PubMed  Google Scholar 

  8. Bryan, P.N., Rollence, M.L., Pantoliano, M.W., Wood, J., Finzel, B.C., Gilliland, G.L., Howard, A.J. and Poulos, T.L. 1986. Proteases of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins Struct. Funct. Genet. 1: 326–334.

    Article  CAS  PubMed  Google Scholar 

  9. Imanaka, T., Shibazaki, M. and Takagi, M. 1986. A new way of enhancing the thermostability of proteases. Nature 324: 695–697.

    Article  CAS  PubMed  Google Scholar 

  10. Quax, W.J., Mrabet, N.T., Luiten, R.G.M., Schuurhuizen, P.W., Stanssens, P. and Lasters, I. 1991. Enhancing the thermostability of glucose isomerase by protein engineering. Bio/Technology 9: 738–742.

    CAS  Google Scholar 

  11. Argos, P., Rossmann, M.G., Grau, U.M., Zuber, H., Frank, G. and Trat-schin, J.D. 1979. Thermal stability and protein structure. Biochemistry 18: 5698–5703.

    Article  CAS  PubMed  Google Scholar 

  12. Declerck, N., Joyet, P., Gaillardin, C. and Masson, J.-M. 1990. Use of amber suppressors to investigate the thermostability of Bacillus licheniforrnis α-amylase. J. Biol. Chem. 265: 15481–15488.

    CAS  PubMed  Google Scholar 

  13. Matsumura, M. and Aiba, S. 1985. Screening for thermostable mutants of kanamycin nucleotidyltransferase by the use of a transformation system for a thermophile, Bacillus stearothermophilus . J. Biol. Chem. 260: 15298–15303.

    CAS  PubMed  Google Scholar 

  14. Liao, H., McKenzie, T. and Hageman, R. 1986. Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc. Natl. Acad. Sci. USA 83: 576–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shortle, D. and Lin, B. 1985. Genetic analysis of staphilococcal nuclease: identification of three intragenic “global” suppressors of nuclease-minus mutation. Genetics 110: 539–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Das, G., Hickey, D.R., McLendon, D., McLendon, G. and Sherman, F. 1989. Dramatic thermostabilization of the yeast iso-1-cytochrome c by an asparagine/isoleucine replacement at position 57. Proc. Natl. Acad. Sci. USA 86: 496–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pakula, A.A. and Sauer, R.T. 1989. Amino acids substitutions that increase the thermal stability of the lambda Cro protein. Proteins Struct. Funct. Genet. 5: 202–210.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki, Y., Ito, N., Yuuki, T., Yamagata, H. and Udaka, S. 1989. Amino acid residues stabilizing a Bacillus α-amylase against irreversible thermoinactivation. J. Biol. Chem. 264: 18933–18938.

    CAS  PubMed  Google Scholar 

  19. Vihinen, M., Ollikka, P., Niskanen, J., Meyer, P., Suominen, I., Karp, M., Holm, L., Knowles, J. and Mäntsälä, P. 1990. Site-directed mutagenesis of a thermostable α-amylase from Bacillus stearothermophilus: Putative role of three conserved residues. J. Biochem. 107: 267–272.

    Article  CAS  PubMed  Google Scholar 

  20. Alber, T. and Wozniak, J.A. 1985. A genetic screen for mutations that increase the thermal stability of phage T4 lysozyme. Proc. Natl. Acad. Sci. USA 82: 747–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsumura, M., Yasumura, S. and Aiba, S. 1986. Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein. Nature 323: 356–358.

    Article  CAS  PubMed  Google Scholar 

  22. Matsumura, M., Signor, G. and Matthews, B.W. 1989. Substantial increase of protein stability by multiple disulphide bonds. Nature 342: 291–293.

    Article  CAS  PubMed  Google Scholar 

  23. Matsuura, Y., Kusunoki, M., Harada, W. and Kakudo, M. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95: 697–702.

    Article  CAS  PubMed  Google Scholar 

  24. Buisson, G., Duée, E., Haser, R. and Payan, F. 1987. Three dimensional structure of porcine pancreatic α-amylase at 2.9 Å resolution. Role of calcium in structure and activity. EMBO J. 6: 3909–3916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holm, L., Koivula, A.K., Lehtovaara, P.M., Hemminki, A. and Knowles, J.K.C. 1990. Random mutagenesis used to probe the structure and function of B. stearothermophilus α-amylase. Protein Eng. 3: 181–191.

    Article  CAS  PubMed  Google Scholar 

  26. Phillips, D.C., Sternberg, M.J.E., Thornton, J.M. and Wilson, I.A. 1978. An analysis of the structure of triose phosphate isomerase and its comparison with lactate deshydrogenase. J. Mol. Biol. 119: 329–351.

    Article  CAS  PubMed  Google Scholar 

  27. Raimbaud, E., Buleon, A., Perez, S. and Henrissat, B. 1989. Hydrophobic cluster analysis of the primary sequences of α-amylases. Int. J. Biol. Macromol. 11: 217–225.

    Article  CAS  PubMed  Google Scholar 

  28. Tomazic, S.J. and Klibanov, A.M. 1988. Why one Bacillus amylase is more resistant against irreversible thermoinactivation than another? J. Biol. Chem. 263: 3092–3096.

    CAS  PubMed  Google Scholar 

  29. Tomazic, S.J. and Klibanov, A.M. 1988. Mechanisms of irreversible thermal inactivation of Bacillus α-amylases. J. Biol. Chem. 263: 3086–3091.

    CAS  PubMed  Google Scholar 

  30. Gray, G.L., Mainzer, S.E., Rey, M.W., Lamsa, M.H., Kindle, K. L., Carmona, C. and Requadt, C. 1986. Structural gene encoding the thermophilic α-amylases of Bacillus stearothermophilus and Bacillus licheniformis . J. Bacteriol. 166: 635–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tessmann, I. 1968. Mutagenic treatement of double and single stranded DNA phages T4 and S13 with hydroxylamine. Virology 35: 330–338.

    Article  Google Scholar 

  32. Neu, H., and C., Heppel, L., A. 1965. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem. 240: 3685–3692.

    CAS  PubMed  Google Scholar 

  33. Bernfeld, P., 1955. Amylases, α and β . Methods in Enzymol. 1: 149–158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joyet, P., Declerck, N. & Gaillardin, C. Hyperthermostable Variants of a Highly Thermostable Alpha-Amylase. Nat Biotechnol 10, 1579–1583 (1992). https://doi.org/10.1038/nbt1292-1579

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1292-1579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing