Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

High-Level Secretion of Glycosylated Invertase in the Methylotrophic Yeast, Pichia Pastoris

Abstract

The SUC2 gene from S. cerevisiae was transformed into the methylotrophic yeast Pichia pastoris and used to study the synthesis, post-translational processing, and secretion of invertase. SUC2 gene expression under the control of the alcohol oxidase (AOX1) promoter resulted in efficient secretion of biologically active invertase into the periplasmic space and growth medium of P. pastoris, giving the methylotrophic yeast a Suc+ phenotype. Invertase produced and secreted from an alcohol oxidase-deficient (aox1) host reached levels of up to 2.5 grams per liter of growth medium. The N-terminus of invertase secreted from P. pastoris was homogeneous and found to be identical to invertase secreted from S. cerevisiae. Invertase secreted from P. pastoris was glycosylated but contained significantly less carbohydrate than protein secreted by S. cerevisiae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cregg, J.M., Tschopp, J.F., Stillman, C., Siegel, R., Akong, M., Craig, W.S., Buckholz, R.G., Madden, K.R., Kellaris, P.A., Davis, G.R., Smiley, B.L., Cruze, J., Torregrossa, R., Velicelebi, G., and Thill, G.P. 1987. High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris. Bio/Technology 5: 479–485.

    CAS  Google Scholar 

  2. Tschopp, J.F., Brust, P.F., Cregg, J.M., Stillman, C.A., and Gingeras, T.R. 1987. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucl. Acids Res. 15: 3859–3876.

    Article  CAS  Google Scholar 

  3. Wegner, E.H. 1983. Biochemical conversions by yeast fermentation at high-cell densities. U.S. patent 4414329.

  4. Sreekrishna, K., Tschopp, J.F., and Fuke, M. 1987. Invertase gene (SUC2) of Saccharomyces cerevisiae as a dominant marker for transformation of P.pastoris. Gene (59: 115–125).

    Article  CAS  Google Scholar 

  5. Goldstein, A. and Lampen, J.O. 1975. β-D-fructofuranoside fructohydrolase from yeast. Meth. Enzymol. 42: 504–511.

    Article  CAS  Google Scholar 

  6. Carlson, M. and Botstein, D. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28: 145–154.

    Article  CAS  Google Scholar 

  7. Taussig, R. and Carlson, M. 1983. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucl. Acids Res. 11: 1943–1954.

    Article  CAS  Google Scholar 

  8. Esmon, P.C., Esmon, B.E., Schauer, I.E., Taylor, A., and Schekman, R. 1987. Structure, assembly, and secretion of octameric invertase. J. Biol. Chem. 262: 4387–4394.

    CAS  PubMed  Google Scholar 

  9. Tammi, M., Ballou, L., Taylor, A., and Ballou, C.E. 1987. Effect of glycosylation on yeast invertase oligomer stability. J. Biol. Chem. 262: 4395–4401.

    CAS  PubMed  Google Scholar 

  10. Schekman, R. and Novick, P. 1982. The secretory process and yeast cell-surface assembly, p. 361–393. In: The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Strathern, J. N., Jones, E. W., and Broach, J. R. (eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  11. Ballou, C.E. 1982. Yeast cell wall and cell surface, p. 335–360. In: Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Strathern, J. N., Jones, E. W., and Broach, J. R. (eds). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  12. Esmon, B., Novick, P., and Schekman, R. 1981. Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast. Cell 25: 451–460.

    Article  CAS  Google Scholar 

  13. Cregg, J.M., Barringer, K.J., Hessler, A.Y., and Madden, K.R. 1985. Pichia pastoris as a host system for transformations. Mol. Cell. Biol. 5: 3376–3385.

    Article  CAS  Google Scholar 

  14. Cregg, J.M. and Madden, K.R. 1987. Development of yeast transformation systems and construction of methanol-utilization-defective mutants of Pichia pastoris by gene disruption, p. 1–18. In: Biological Research on Industrial Yeasts, Vol II. Stewart, G. G., Russell, I., Klein, R. D., and Hiebsch, R. R. (eds.) CRC Press, Boca Raton, Florida (in press). invertase from Saccharomyces cerevisiae. J. Biol. Chem. 252: 4409–4412.

    Google Scholar 

  15. Kingsman, S.M., Kingsman, A.J., and Mellor, J. 1987. The production of mammalian proteins in Saccharomyces cerevisiae. Trends In Biotech. 5: 53–57.

    Article  CAS  Google Scholar 

  16. Cullen, D., Gray, G.L., Wilson, L.J., Hayenga, K.J., Lamsa, M.H., Ray, M.W., Norton, S., and Berka, R.M. 1987. Controlled expression and secretion of bovine chymosin in Aspergillus nidulans. Bio/Technology 5: 369–376.

    CAS  Google Scholar 

  17. Schauer, I., Emr, S., Gross, C., and Schekman, R. 1985. Invertase signal and mature sequence substitutions that delay intercompartmental transport of active enzyme. J. Cell Biol. 100: 1664–1675.

    Article  CAS  Google Scholar 

  18. Novick, P., Ferro, S., and Schekman, R. 1981. Order of events in the yeast secretory pathway. Cell 25: 461–469.

    Article  CAS  Google Scholar 

  19. Perlman, D., Halvorson, H.O., and Cannon, L.E. 1982. Presecretory and cytoplasmic invertase polypeptides encoded by distinct mRNAs derived from the same structural gene differ by a signal sequence. Proc. Natl. Acad. Sci. USA 79: 781–785.

    Article  CAS  Google Scholar 

  20. Chu, F.K., Takase, K., Guarino, D., and Maley, F. 1985. Diverse properties of external and internal forms of yeast invertase derived from the same gene. Biochemistry 24: 6125–6132.

    Article  CAS  Google Scholar 

  21. Esmon, B., Esmon, P.C., and Schekman, R. 1984. Early steps in processing of yeast glycoproteins. J. Biol. Chem. 259: 10322–10327.

    CAS  Google Scholar 

  22. Kornfeld, R. and Kornfeld, S. 1985. Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54: 631–664.

    Article  CAS  Google Scholar 

  23. Emr, S.D., Schekman, R., Flessel, M.C., and Thorner, J. 1983. An MFα1-SUC2(α-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc. Natl. Acad. Sci. USA 80: 7080–7084

    Article  CAS  Google Scholar 

  24. Wickerham, L.J. 1946. A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts. J. Bacteriol. 25: 293–301.

    Google Scholar 

  25. Emr, S.D., Vassorotti, A., Garrett, J., Geller, B.L., Takeda, M., and Douglas, M.G. 1986. The amino terminus of the yeast Fl-ATPase β-subunit precursor functions as a mitochondrial import signal. J. Cell Biol. 102: 523–533.

    Article  CAS  Google Scholar 

  26. Ito, H., Murata, K., and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations or thiol compounds. Agric. Biol. Chem. 48: 341–347.

    Google Scholar 

  27. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

  28. Johnson, M.L., Bankaitis, V.A., and Emr, S.D. 1987. Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48: 875–885.

    Article  CAS  Google Scholar 

  29. Hewick, R.M., Hunkapiller, M.W., Hood, L.E., and Dreyer, W.J. 1981. A gas-liquid solid phase peptide and protein sequenator. J. Biol. Chem. 256: 7990–7997.

    CAS  Google Scholar 

  30. Laemmli, U.K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  31. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschopp, J., Sverlow, G., Kosson, R. et al. High-Level Secretion of Glycosylated Invertase in the Methylotrophic Yeast, Pichia Pastoris. Nat Biotechnol 5, 1305–1308 (1987). https://doi.org/10.1038/nbt1287-1305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1287-1305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing