Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modeling cellular machinery through biological network comparison

Abstract

Molecular networks represent the backbone of molecular activity within the cell. Recent studies have taken a comparative approach toward interpreting these networks, contrasting networks of different species and molecular types, and under varying conditions. In this review, we survey the field of comparative biological network analysis and describe its applications to elucidate cellular machinery and to predict protein function and interaction. We highlight the open problems in the field as well as propose some initial mathematical formulations for addressing them. Many of the methodological and conceptual advances that were important for sequence comparison will likely also be important at the network level, including improved search algorithms, techniques for multiple alignment, evolutionary models for similarity scoring and better integration with public databases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Network alignment.
Figure 2: A gamut of network comparative approaches.
Figure 3: Evolutionary processes shaping protein interaction networks.
Figure 4: Parallels between sequence and network comparison on a timeline.

Similar content being viewed by others

References

  1. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  2. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  3. Iyer, V.R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).

    Article  CAS  Google Scholar 

  4. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  5. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  6. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  Google Scholar 

  7. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    Article  CAS  Google Scholar 

  8. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  Google Scholar 

  9. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  Google Scholar 

  10. Peri, S. et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363–2371 (2003).

    Article  CAS  Google Scholar 

  11. Nikitin, A., Egorov, S., Daraselia, N. & Mazo, I. Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19, 2155–2157 (2003).

    Article  CAS  Google Scholar 

  12. von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002).

    Article  CAS  Google Scholar 

  13. Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102, 1974–1979 (2005).

    Article  CAS  Google Scholar 

  14. Bader, J.S., Chaudhuri, A., Rothberg, J.M. & Chant, J. Gaining confidence in high-throughput protein interaction networks. Nat. Biotechnol. 22, 78–85 (2004).

    Article  CAS  Google Scholar 

  15. Qi, Y., Klein-Seetharaman, J. & Bar-Joseph, Z. Random forest similarity for protein-protein interaction prediction from multiple sources. Pac. Symp. Biocomput. 10, 531–542 (2005).

    Google Scholar 

  16. Deng, M., Sun, F. & Chen, T. Assessment of the reliability of protein-protein interactions and protein function prediction. Pac. Symp. Biocomput. 8, 140–151 (2003).

    Google Scholar 

  17. Suthram, S., Shlomi, T., Ruppin, E., Sharan, R. & Ideker, T. in Proceedings of the First Annual RECOMB Systems Biology Workshop, vol. 1 (2005).

    Google Scholar 

  18. Kelley, B.P. et al. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA 100, 11394–11399 (2003).

    Article  CAS  Google Scholar 

  19. Rhodes, D.R. et al. Probabilistic model of the human protein-protein interaction network. Nat. Biotechnol. 23, 951–959 (2005).

    Article  CAS  Google Scholar 

  20. Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nat. Biotechnol. 23, 561–566 (2005).

    Article  CAS  Google Scholar 

  21. Zhang, L.V. et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005).

    Article  CAS  Google Scholar 

  22. Matthews, L.R. et al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs.” Genome Res. 11, 2120–2126 (2001).

    Article  CAS  Google Scholar 

  23. Yu, H. et al. Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res. 14, 1107–1118 (2004).

    Article  CAS  Google Scholar 

  24. Tohsato, Y., Matsuda, H. & Hashimoto, A. in Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB) 376–383 (2000).

    Google Scholar 

  25. Berg, J. & Lassig, M. Local graph alignment and motif search in biological networks. Proc. Natl. Acad. Sci. USA 101, 14689–14694 (2004).

    Article  CAS  Google Scholar 

  26. Ogata, H., Fujibuchi, W., Goto, S. & Kanehisa, M. A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res. 28, 4021–4028 (2000).

    Article  CAS  Google Scholar 

  27. Sharan, R., Ideker, T., Kelley, B., Shamir, R. & Karp, R.M. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol. 12, 835–846 (2005).

    Article  CAS  Google Scholar 

  28. Suthram, S., Sittler, T. & Ideker, T. The Plasmodium protein network diverges from those of other eukaryotes. Nature 438, 108–112 (2005).

    Article  CAS  Google Scholar 

  29. Koyuturk, M., Grama, A. & Szpankowski, W. in Proceedings of the Ninth Annual International Conference on Research in Computational Molecular Biology (RECOMB) 48–65 (2005).

    Google Scholar 

  30. Bandyopadhyay, S., Sharan, R. & Ideker, T. Systematic identification of functional orthologs based on protein network comparison. Genome Res. 16, 428–435 (2006).

    Article  CAS  Google Scholar 

  31. Koyuturk, M., Grama, A. & Szpankowski, W. An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics 20 suppl. 1, I200–I207 (2004).

    Article  Google Scholar 

  32. Stuart, J.M., Segal, E., Koller, D. & Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    Article  CAS  Google Scholar 

  33. Bader, G.D. et al. BIND-The biomolecular interaction network database. Nucleic Acids Res. 29, 242–245 (2001).

    Article  CAS  Google Scholar 

  34. Xenarios, I. et al. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002).

    Article  CAS  Google Scholar 

  35. Zanzoni, A. et al. MINT: a Molecular INTeraction database. FEBS Lett. 513, 135–140 (2002).

    Article  CAS  Google Scholar 

  36. Breitkreutz, B.J., Stark, C. & Tyers, M. The GRID: the General Repository for Interaction Datasets. Genome Biol. 4, R23 (2003).

    Article  Google Scholar 

  37. Gunsalus, K.C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436, 861–865 (2005).

    Article  CAS  Google Scholar 

  38. Kemmeren, P. et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell 9, 1133–1143 (2002).

    Article  CAS  Google Scholar 

  39. Jansen, R. et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453 (2003).

    Article  CAS  Google Scholar 

  40. Lee, I., Date, S.V., Adai, A.T. & Marcotte, E.M. A probabilistic functional network of yeast genes. Science 306, 1555–1558 (2004).

    Article  CAS  Google Scholar 

  41. Lu, L.J., Xia, Y., Paccanaro, A., Yu, H. & Gerstein, M. Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 15, 945–953 (2005).

    Article  CAS  Google Scholar 

  42. Wong, S.L. et al. Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. USA 101, 15682–15687 (2004).

    Article  CAS  Google Scholar 

  43. Yeger-Lotem, E. et al. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl. Acad. Sci. USA 101, 5934–5939 (2004).

    Article  CAS  Google Scholar 

  44. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E. & Ziv-Ukelson, M. Alignment of metabolic pathways. Bioinformatics 21, 3401–3408 (2005).

    Article  CAS  Google Scholar 

  45. Giugno, R. & Shasha, D. in Proceeding of the 16th International Conference on Pattern Recognition (ICPR) 112–115 (2002).

    Google Scholar 

  46. Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  Google Scholar 

  47. Berg, J., Lassig, M. & Wagner, A. Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol. Biol. 4, 51 (2004).

    Article  Google Scholar 

  48. Rzhetsky, A. & Gomez, S.M. Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome. Bioinformatics 17, 988–996 (2001).

    Article  CAS  Google Scholar 

  49. Barabasi, A.L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  CAS  Google Scholar 

  50. Wagner, A. & Fell, D.A. The small world inside large metabolic networks. Proc. Biol. Sci. 268, 1803–1810 (2001).

    Article  CAS  Google Scholar 

  51. Eisenberg, E. & Levanon, E.Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. 91, 138701 (2003).

    Article  Google Scholar 

  52. Needleman, S.B. & Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  Google Scholar 

  53. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  54. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  55. Jukes, T.H. & Cantor, C.R. in Mammalian Protein Metabolism (ed. Munro, H.N.) 21–123 (Academic Press, New York, 1969).

    Book  Google Scholar 

  56. Goehler, H. et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol. Cell 15, 853–865 (2004).

    Article  CAS  Google Scholar 

  57. Calvano, S.E. et al. A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037 (2005).

    Article  CAS  Google Scholar 

  58. Sanger, F. & Tuppy, H. The amino acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem. J. 49, 463–481 (1951).

    Article  CAS  Google Scholar 

  59. Dayhoff, M.O., Schwartz, R.M. & Orcutt, B.C. A model of evolutionary change in proteins. in Atlas of Protein Sequence and Structure, vol. 5, suppl. 3, (Dayhoff, M.O., ed.) 345–352 (National Biomedical Research Foundation, Silver Spring, MD, 1978).

    Google Scholar 

  60. Needleman, S.B. & Wunsch, C.D. A general method applicable to the search of similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  Google Scholar 

  61. Smith, T.F. & Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).

    Article  CAS  Google Scholar 

  62. Kyte, J. & Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  63. Stormo, G.D. & Hartzell, G.W. III. Identifying protein-binding sites from unaligned DNA fragments. Proc. Natl. Acad. Sci. USA 86, 1183–1187 (1989).

    Article  CAS  Google Scholar 

  64. Taylor, W.R. Multiple sequence alignment by a pairwise algorithm. Comput. Appl. Biosci. 3, 81–87 (1987).

    CAS  PubMed  Google Scholar 

  65. Lipman, D.J., Altschul, S.F. & Kececioglu, J.D. A tool for multiple sequence alignment. Proc. Natl Acad. Sci. USA 86, 4412–4415 (1989).

    Article  CAS  Google Scholar 

  66. Krogh, A., Brown, M., Mian, S., Sjolander, K. & Haussler, D. Hidden Markov models in computational biology: applications to protein modeling. J. Mol. Biol. 235, 1501–1531 (1994).

    Article  CAS  Google Scholar 

  67. Borodovsky, M. & McIninch, J. GENMARK: parallel gene recognition for both DNA strands. Comput. Chem. 17, 123–133 (1993).

    Article  CAS  Google Scholar 

  68. Churchill, G.A. Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol. 51, 79–94 (1989).

    Article  CAS  Google Scholar 

  69. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  CAS  Google Scholar 

  70. Scott, J., Ideker, T., Karp, R.M. & Sharan, R. in Proceedings of the Ninth Annual International Conference on Research in Computational Molecular Biology (RECOMB) 1–13 (2005).

    Google Scholar 

  71. Alon, N., Yuster, R. & Zwick, U. Color-coding. J. ACM 42, 844–856 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

R.S. is supported by an Alon Fellowship; T.I., by the David and Lucille Packard Foundation. This work was also supported by the National Center for Research Resources (RR018627) and the National Science Foundation (NSF 0425926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roded Sharan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharan, R., Ideker, T. Modeling cellular machinery through biological network comparison. Nat Biotechnol 24, 427–433 (2006). https://doi.org/10.1038/nbt1196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing