Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Protective Surface Antigen P69 of Bordetella pertussis: Its Characterization and Very High Level Expression in Escherichia coli

Abstract

The surface antigen, P69 of Bordetella pertussis, an N-terminal fragment of the precursor protein, P93, is likely to be an important component of future subunit vaccines against whooping cough. We have expressed several defined N-terminal fragments of P93 in E. coli and compared their electrophoretic mobilities with that of purified P69 from B. pertussis. These experiments show that P69 is considerably smaller than the 69 kD originally estimated from its gel mobility and is probably 60.4 kD in size. Our initial plasmids expressed only very low levels of this antigen. We diagnosed the limiting factor to be a poor ribosome binding site (RBS) by demonstrating a large stimulation of expression on a two-cistron plasmid. The limitation of expression could be completely overcome by only two base changes close to the initiation codon, resulting in a further increase in expression of P69 at levels to 30–40% total cell protein. Although the protein accumulated as insoluble inclusion bodies, it could be solubilized by guanidinium chloride.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zeulzer, W.W. and Wheeler, W.E. 1946. Parapertussis pneumonia: report of two fatal cases. J. Pediatr. 9: 493–497.

    Article  Google Scholar 

  2. Linneman, C. and Perry, E.B. 1977. Bordetella parapertussis: clinical and serological observations. J. Pediatr. 19: 229–240.

    Google Scholar 

  3. Pittman, M. 1984. Genus Bordetella, p. 388–393. In: Bergey's Manual of Systematic Bacteriology, Vol. 1. Krieg, N.R. and Holt, J.G. (Eds.) The Williams and Wilkins Co., Baltimore.

    Google Scholar 

  4. Arico, B., Miller, J.F., Roy, C., Stibitz, S., Monack, D., Falkow, S., Gross, R. and Rappuoli, R. 1989. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc. Natl. Acad. Sci. U.S.A. 86: 6671?6675.

    Article  PubMed Central  Google Scholar 

  5. Montaraz, J.A., Novotny, P. and Ivanyi, J. 1985. Identification of a 68-kilodalton protective protein antigen from Bordetella bronchiseptica. Infect. Immun. 47: 744–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kobisch, M. and Novotny, P. 1990. Identification of a 68-kilodalton outer membrane protein as the major protective antigen of Bordetella bronchiseptica by using specific-pathogen-free piglets. Infect. Immun. 58: 352–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shahin, R.D., Brennan, M.J., Li, Z.M., Meade, B.D. and Manclark, C.R. 1990. Characterization of the protective capacity and immuno-genicity of the 69 kDa outer membrane protein of Bordetella pertussis. J. Exp. Med. 171: 63–73.

    Article  CAS  PubMed  Google Scholar 

  8. Charles, I.G., Dougan, G., Pickard, D., Chatfield, S., Smith, M., Novotny, P., Morrissey, P. and Fairweather, N.F. 1989. Molecular cloning and characterization of protective outer membrane protein P.69 from Bordetella pertussis. Proc. Natl. Acad. Sci. U.S.A. 86: 3554–3558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klapper, M.H. 1977. The independent distribution of amino acid near neighbor pairs into polypeptides. Biochem. Biophys. Res. Comm. 78: 1018–1024.

    Article  CAS  PubMed  Google Scholar 

  10. See, Y.S. and Jackowsky, G. 1989. SDS gel electrophoresis, p. 1–21. In: Protein Structure: A Practical Approach. Creighton, T. E. (Ed.) IRL Press, Oxford.

    Google Scholar 

  11. Thole, J.E.R., Stabel, L.F.E.M., Suykerbuyk, M.E.G., de Wit, P.R.K., Kolk, A.H.J. and Hartskeerl, R.A. 1990. A major immunogenic 36,000-molecular-weight antigen from Mycobacterium leprae contains an immunoreactive region of proline-rich repeats. Infect. Immun. 58: 80–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Docherty, K. and Steiner, D.F. 1982. Post-translational proteolysis in polypeptide hormone biosynthesis. Ann. Rev. Physiol. 44: 625–638.

    Article  CAS  Google Scholar 

  13. Thomas, G., Thorne, B.A., Thomas, L., Allen, R.G., Hruby, D.E., Fuller, R. and Thorner, J. 1988. Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science 241: 226–230.

    Article  CAS  PubMed  Google Scholar 

  14. Makoff, A.J. and Smallwood, A.E. 1990. The use of two-cistron constructions in improving the expression of a heterologous gene in E. coli. Nucl. Acids Res. 18: 1711–1718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schoner, B.E., Hsuing, H.N., Belagaje, R.M., Mayne, N.G. and Schoner, R.G. 1984. Role of mRNA translational efficiency in bovine growth hormone expression in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 81: 5403–5407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spanjaard, R.A. and van Duin, J. 1989. Translational reinitiation in the presence and absence of a Shine and Dalgarno sequence. Nucl. Acids Res. 17: 5501–5507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Makoff, A.J., Oxer, M.D., Romanos, M.A., Fairweather, N.F. and Ballantine, S.P. 1989. Expression of tetanus toxin fragment C in E. coli: high level expression by removing rare codons. Nucl. Acids Res. 17: 10191–10202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cooper, A. and Bussey, H. 1989. Characterization of the yeast KEX1 gene product: a carboxypeptidase involved in processing secreted precursor proteins. Mol. Cell Biol. 9: 2706–2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gold, L.M., Pribnow, D., Schneider, T., Shinedling, S., Singer, B.S. and Stormo, G. 1981. Translation initiation in prokaryotes. Ann. Rev. Microbiol. 35: 365–403.

    Article  CAS  Google Scholar 

  20. Hall, M.N., Gabay, J., Debarbouille, M. and Schwartz, M. 1982. A role for mRNA secondary structure in the control of translation initiation. Nature 295: 616–618.

    Article  CAS  PubMed  Google Scholar 

  21. Iserentant, D. and Fiers, W. 1980. Secondary structure of mRNA and efficiency of translation initiation. Gene 9: 1–12.

    Article  CAS  PubMed  Google Scholar 

  22. Sor, F., Bolotin-Fukuhara, M. and Nomura, M. 1987. Mutational alterations of translational coupling in the L11 ribosomal protein operon of Escherichia coli. J. Bacteriol. 169: 3495–3507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ivey-Hoyle, M. and Steege, D.A. 1989. Translation of phage f1 gene VII occurs from an inherently defective initiation site made functional by coupling. J. Mol. Biol. 208: 233–244.

    Article  CAS  PubMed  Google Scholar 

  24. Makoff, A.J., Parry, N and Dicken, L.P. 1989. Translational fusions with fragments of the trpE gene improve the expression of a poorly expressed gene in Escherichia coli. J. Gen. Microbiol. 135: 11–24.

    CAS  PubMed  Google Scholar 

  25. Makoff, A.J., Ballantine, S.P., Smallwood, A.E. and Fairweather, N.F. 1989. Expression of tetanus toxin fragment C in E. coli: its purification and potential use as a vaccine. Bio/Technology 7: 1043–1046.

    CAS  Google Scholar 

  26. Meselson, M. and Yuan, R. 1968. DNA restriction enzyme from E. coli. Nature 217: 1110–1114.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makoff, A., Oxer, M., Ballantine, S. et al. Protective Surface Antigen P69 of Bordetella pertussis: Its Characterization and Very High Level Expression in Escherichia coli. Nat Biotechnol 8, 1030–1033 (1990). https://doi.org/10.1038/nbt1190-1030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1190-1030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing