Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chaos in the Heart: Implications for Clinical Cardiology

Abstract

Mathematical “chaos” appears to occur in the heartbeat time-series. Low-dimensional chaos can be visualized as a geometric or spatial pattern in a temporal process. Several methods are available for representing these geometric patterns, including the mutual information content, the correlation dimension, and the type of pattern recurrences. Application of these methods to the heartbeat following coronary artery occlusion shows that prior to the initiation of lethal arrhythmogenesis the mutual information increases, the correlation dimension decreases, and the recurrence patterns shift from periodic clustering to local clustering. These observations not only have implications for new theoretical approaches to understanding how the heartbeat is generated and how arrhythmias occur, but also for the development of new biomedical tests and the manufacture of new devices for use in clinical cardiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mandelbrot, B. 1982. The Fractal Geometry of Nature. WH Freeman San Francisco

    Google Scholar 

  2. Takens, F. 1985. On the numerical determination of the dimension of an attractor. Lecture Notes in Mathematics. Springer-Verlag Berlin. 1125: 99–106.

    Article  Google Scholar 

  3. Goldberger, A.L., Rigney, D.R., Mietus, J. Antman, E.M. and Greenwald, S. 1988. Nonlinear dynamics in sudden cardiac death syndrome: Heartrate oscillations and bifurcations. Experientia 44: 983–987.

    Article  CAS  Google Scholar 

  4. Stambler, B.S., Morgan, J.P., Mietus, J., Moody, G.B., Rigney, D.R. and Goldberger, A.L. 1989. Distinctive heart rate dynamics precede cocaine induced sudden death. J. Mol. Cell. Cardiol. 21(Suppl II): 5–16.

    Article  Google Scholar 

  5. Goldberger, A.L., Rigney, D.R. and West, B.J. 1990. Chaos and fractals in human physiology. Sci. Am. 262: 42–49.

    Article  CAS  Google Scholar 

  6. Furman, M.I. Kaplan, D.T., Ryan, S.M., LipsitZ, L.A. and Goldberger, A.L. 1990. A nonlinear parameter measures loss of complexity in heat rate time series with aging. Clin. Res. In press.

    Google Scholar 

  7. Goldberger, A.L. and Rigney, D.R. Nonlinear dynamics at the bedside. 1990. In: Theory of Heart. Glass, L., and Hunter P. (Eds.). Springer-Verlag Berlin. In press.

    Google Scholar 

  8. Haken, H. 1983. Advanced Synergetics. Springer-Verlag Berlin.

    Google Scholar 

  9. Fraser, A.M. and Swinney, H.L. 1986. Independent coordinates for strange attractors from mutual information. Phys. Rev. 33: 1134–1140.

    Article  CAS  Google Scholar 

  10. Grassberger, P. and Procaccia, I. 1983. Measuring the strangeness of strange attractors. Physica 9D: 189–208.

    Google Scholar 

  11. Mayer-Kress, G. (Ed.). 1986. Dimensions and Entropies in Chaotic Systems. Springer Series in Synergetics, Vol. 23. Springer-Verlag, Berlin.

    Book  Google Scholar 

  12. Mayer-Kress, G. and Layne, S.P. 1987. Dimensionality of the human electroencephalogram. Ann. of the New York Acad. of Sci. 504: 62–86.

    Article  CAS  Google Scholar 

  13. Mayer-Kress, G., Yates, F.E., Benton, L., Keidel, M., Tirsch, W., Pöoppl, S.J. and Geist, K. 1988. Dimensional analysis of nonlinear oscillation in brain, heart and muscle, Mathematical Biosciences 90: 155–182.

    Article  Google Scholar 

  14. Zbilut, J.P., Mayer-Kress, G., Sobotka, P., O'Toole, M. and Thomas, J.X. 1990. Chaotic heart rate dynamics in isolated perfused rat hearts, Biol. Cybernetics, In press.

    Google Scholar 

  15. Skinner, J.E., Carpeggiani, C., Landisman, C.E. and Fulton, K.W. 1990. The correlation dimension of the heartbeat intervals is reduced in conscious pigs by myocardial ischemia. Circ. Res. Submitted.

    Google Scholar 

  16. Eckmann, J.P., Kamphorst, S.O. and Ruelle, D. 1987. Recurrence plots of dynamical systems. Europhysics Letters 4: 973–977.

    Article  Google Scholar 

  17. Farmer, J.D. and Sidorowich, J. 1988. Exploiting chaos to predict the future and reduce noise, p. 1–50. In: Evolution, Learning and Cognition. Lee, Y.C. (Ed.). World Scientific Publishing Co. Singapore.

    Google Scholar 

  18. Hübler, A. and Lüscher, E. 1989. Resonant stimulation and control of nonlinear oscillators, Naturwissenschaften 76: 67–69.

    Article  Google Scholar 

  19. Mayer-Kress, G. and Hübler, A. 1990. Time evolution of local complexity measures and aperiodic perturbations of nonlinear dynamical systems. In: Quantitative Measures of Complex Dynamical Systems. Abraham N. B. (Ed.). Plenum Press, NY. In press.

    Google Scholar 

  20. Ebert, P.A., Vanderbeck, R.B., Allgood, R.J. and Sabiston, D.C., Jr. 1970. Effect of chronic cardiac denervation on arrhythmias after coronary artery ligation. Cardiovascular Res. 4: 141–147.

    Article  CAS  Google Scholar 

  21. Skinner, J.E. and Reed, J.C. 1981. Blockade of a frontocortical-brainstem pathway prevents ventricular fibrillation of the ischemic heart in pigs. American Journal of Physiology 240: H156–H163.

    CAS  PubMed  Google Scholar 

  22. Kitney, R.I. 1987. Beat-by-beat interrelationships between heart rate, blood pressure, and respiration, p. 164–178. In: The Beat-by-Beat Investigation of Cardiovascular Function. Kitney, R. I., and Rompel-man, O. (Eds.) Clarendon Press, Oxford.

    Google Scholar 

  23. Mulder, L.J.M. and Mulder, G. 1987. Cardiovascular reactivity and mental work-load, p 216–267. Ibid.

    Google Scholar 

  24. Tavazzi, L., Sotti, A.M. and Rondanelli, R. 1986. The role of psychologic stress in the genesis of lethal arrthymias in patients with coronary artery disease. Eur. Heart J. 7(Suppl A): 99–105.

    Article  Google Scholar 

  25. Skinner, J.E., Lie, J.T. and Entman, M.L. 1975. Modification of ventricular fibrillation latency following coronary artery occlusion in the conscious pig: the effects of psychological stress and beta-adrenergic blockade. Circulation 51: 656–667.

    Article  CAS  Google Scholar 

  26. Skinner, J.E. 1985. The regulation of cardiac vulnerability by the cerebral defense system. J. Amer. Coll. Cardiol. 5: 88B–94B.

    Article  CAS  Google Scholar 

  27. Kleiger, R.E., Miller, J.P., Bigger, J.T., Moss, A.J. and Multicenter Post-infarction Research Group. 1987. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59: 256–262.

    Article  CAS  Google Scholar 

  28. La Rovere, M.T., Specchia, G., Mortara, A. and Schwartz, P.J. 1988. Baroreflex sensitivity, clinical correlates and cardiovascular mortality among patients with a first myocardial infarction: a prospective study. Circulation 78: 816–824.

    Article  CAS  Google Scholar 

  29. Rahe, R., Bennette, L., Romo, M., Siltanen, P. and Arthur, R.S. 1973. Subjects' recent life change and coronary heart disease in Finland. Am. J. Psychiat. 130: 1222–1226.

    Article  CAS  Google Scholar 

  30. Winfree, A.T. 1987. When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. Princeton University Press, Princeton, NJ.

    Google Scholar 

  31. Chen, P.-S., Shibata, N., Dixon, E.G., Martin, R.O. and Ideker, R.E. 1986. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 73: 1022–1028.

    Article  CAS  Google Scholar 

  32. Ideker, R.E., Smith, W.M., Wolf, P., Danieley, N.D. and Bartram, F.R. 1987. Simultaneous multichannel cardiac mapping systems. PACE 10: 281–292.

    Article  CAS  Google Scholar 

  33. Han, J. and Moe, G.K. 1964. Nonuniform recovery of excitability in ventricular muscle. Circ. Res. 14: 44–60.

    Article  CAS  Google Scholar 

  34. Shibata, N., Chen, P.-S., Dixon, E.G., Wolf, P.D., Danieley, N.D., Smith, W.M. and Ideker, R.E. 1988. Influence of shock strength and timing on induction of ventricular arrhythmias in dogs. Am. J. Physiol. 255: H891–H901.

    CAS  PubMed  Google Scholar 

  35. Chen, P.-S., Wolf, P.D., Dixon, E.G., Danieley, N.D., Frazier, D.W., Smith, W.M. and Ideker, R.E. 1988. Mechanism of ventricular vulnerability to single premature stimuli in open chest dogs. Circ. Res. 62: 1191–1209.

    Article  CAS  Google Scholar 

  36. Frazier, D.W., Wolf, P.D., Wharton, J.M., Tang, A.S.L., Smith, W.M. and Ideker, R.E. 1989. Stimulus-induced critical point: Mechanism for the electrical initiation of reentry in normal canine myocardium. J. Clin. Invest. 83: 1039–1052.

    Article  CAS  Google Scholar 

  37. Winfree, A.T. 1983. Sudden cardiac death. Sci. Am. 248: 144–161.

    Article  CAS  Google Scholar 

  38. Rosenshtraukh, L.V., Zaitsev, A.V., Fast, V.G., Petson, A.M. and Krinsky, V.I. 1989. Vagally induced block and delayed conduction as a mechanism for circus movement tachycardia in frog atria. Circ. Res. 64: 312–226.

    Article  Google Scholar 

  39. Skinner, J.E., Beder, S.D. and Entman, M.L. 1983. Psychologic stress activates phosphorylase in the heart of the conscious pig without increasing heart rate and blood pressure. Proc. Nat. Acad. Sci. USA. 80: 4513–4517.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, J., Goldberger, A., Mayer-Kress, G. et al. Chaos in the Heart: Implications for Clinical Cardiology. Nat Biotechnol 8, 1018–1024 (1990). https://doi.org/10.1038/nbt1190-1018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1190-1018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing