Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Selecting proteins with improved stability by a phage-based method

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Rubingh, D.N. 1997. Protein engineering from a bioindustrial point of view. Curr. Opln. Biotechnol.. 8: 417–422.

    Article  CAS  Google Scholar 

  2. Kast, P. and Hilvert, D. 1997. 3D structural information as a guide to protein engineering using genetic selection. Curr. Opin. Struct. Biol. 7: 470–479.

    Article  CAS  PubMed  Google Scholar 

  3. Kuchner, O. and Arnold, F.H. 1997. Directed evolution of enzyme catalysts. Trends Biotechnol. 15: 523–530.

    Article  CAS  PubMed  Google Scholar 

  4. Matsumura, M. and Aiba, S. 1985. Screening for thermostable mutant of kanamycin nucleotidyltransferase by the use of a transformation system for a thermophile, Bacillus stearothermophilus. J. Biol. Chem. 260: 15298–15303.

    CAS  PubMed  Google Scholar 

  5. Dunn, I.S. 1996. Phage display of proteins. Curr. Opin. Biotechnol. 7: 547–553.

    Article  CAS  PubMed  Google Scholar 

  6. Jung, S. and Pluckthun, A. 1997. Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Eng. 10: 959–966.

    Article  CAS  PubMed  Google Scholar 

  7. Bothmann, H. and Pluckthun, A. 1998. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16: 376–380.

    Article  CAS  PubMed  Google Scholar 

  8. Deng, S.J., MacKenzie, C.R., Sadowska, J., Michniewicz, J., Young, N.M., Bundle, D.R. 1994. Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display. J. Biol. Chem. 269: 9533–9538.

  9. Jackson, J.R., Sathe, G., Rosenberg, M. and Sweet, R. 1995. In vitro antibody maturation. Improvement of a high affinity, neutralizing antibody against IL-1 beta. J. Immunol. 154: 3310–3319.

    CAS  PubMed  Google Scholar 

  10. Proba, K., Worn, A., Honegger, A. and Pluckthun, A. 1998. Antibody scFv fragments without disulfide bonds made by molecular evolution. J. Mol. Biol. 275: 245–253.

    Article  CAS  PubMed  Google Scholar 

  11. Spada, S., Honegger, A. and Pluckthun, A. 1998. Reproducing the natural evolution of protein structural features with the selectively infective phage (SIP) technology. J. Mol. Biol. In press.

  12. Parsell, D. and Sauer, R. 1989. The structural stability of a protein is an important determinant of its proteolytic susceptibiliy in Escherichia coli. J. Biol. Chem. 264: 7590–7595.

    CAS  PubMed  Google Scholar 

  13. Kolmar, H., Frisch,C, Gotze, K., and Fritz, H.J. 1995. Immunoglobulin mutant library genetically screened for folding stability exploiting bacterial signal trans-duction. J. Mol. Biol. 251: 471–476.

    Article  CAS  PubMed  Google Scholar 

  14. Sauer, R.T. Protein folding from a combinatorial perspective. Fold. Des. 1: R27R30. (1996).

  15. Fontana, A. 1997. Polverino de Laureto, P., De Filippis, V., Scaramella, E., and Zambonin, M. Probing the partly folded states of proteins by limited prote-olysisFold. Des. 2: R17–R26.

    Article  CAS  PubMed  Google Scholar 

  16. Crissman, J.W. and Smith, G.R. 1984. Gene-Ill protein of filamentous phage: evidence for a carboxyl-terminal domain with a role in morphogenesis. Virology 132: 445–455.

    Article  CAS  PubMed  Google Scholar 

  17. Stengele, I., Brass, P., Garces, X., Giray, J. 1990. Dissection of functional domains in phage fd adsorption protein. Discrimination between attachment and penetration sites. J. Mol. Biol. 212: 143–149.

    Article  CAS  PubMed  Google Scholar 

  18. Krebber, C.,, Spada, S., Desplancq, D., Krebber, A., Ge, L., and Pluckthun, A . 1997. Selectively-infective phage (SIP): a mechanistic dissection of a novel in vivo selection for protein-ligand interactions. J. Mol. Biol 268: 607 –618.

    Article  CAS  PubMed  Google Scholar 

  19. Spada, S. and Pluckthun, A. 1997. Selectively infective phage (SIP) technology: a novel method for in vivo selection of interacting protein-ligand pairs. Nat. Med. 3: 694–696.

    Article  CAS  PubMed  Google Scholar 

  20. Schwind, P., Kramer, H., Kremser, A., Ramsberger, U. and Rasched, I. 1992. Subtilisin removes the surface layer of the phage fd coat. Eur. J. Biochem. 210: 431–436.

    Article  CAS  PubMed  Google Scholar 

  21. Kremser, A. and Rasched, I. 1994. The adsorption protein of filamentous phage fd: assignment of its disulfide bridges and identification of the domain incorporated in the coat. Biochemistry 33: 13954–13958.

    Article  CAS  PubMed  Google Scholar 

  22. Salivar, W.O., Tzagoloff, H. and Pratt, D. 1964. Some physical-chemical and biological properties of the rod-shaped coliphage M13. Virology 24: 359–371.

    Article  CAS  PubMed  Google Scholar 

  23. Willimsky, G., Bang, H., Fischer, G. and Marahiel, M.A. 1992. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperature. J. Bacteriol. 174: 6326–6335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schindler, T. and Schmid, F.X. 1995. Thermodynamic properties of an extremely rapid protein folding reaction. Biochemistry 35: 16833–16842.

    Article  Google Scholar 

  25. 1996. C, Wunderlich, M., Glockshuber, R., and Schmid, F.X.Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase. Biochemistry 35: 11386–11395.

  26. Oobatake, M., Takahashi, S. and Ooi, T. 1979. Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts. J. Biochem. 86: 55–63.

    CAS  PubMed  Google Scholar 

  27. Pace, C.N., Grimsley, G.R., Thomson, J.A. and Barnett, B.J. 1988. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J. Biol. Chem. 263: 11820–11825.

    CAS  PubMed  Google Scholar 

  28. Miicke, M. and Schmid, F.X. 1994. Intact disuifide bonds decelerate the folding of ribonuclease T1. J. Mol. Biol. 239: 713–725.

    Article  Google Scholar 

  29. Shirley, B.A., Stanssens, P., Hahn, U. and Pace, C.N. 1992. Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry 31: 725–732.

    Article  CAS  PubMed  Google Scholar 

  30. Walter, S., Hubner, B., Hahn, U. and Schmid, F.X. 1995. Destabilization of a protein helix by electrostatic interactions. J. Mol. Biol. 252: 133–143.

    Article  CAS  PubMed  Google Scholar 

  31. Kiefhaber T, Grunert, H.-P., Hahn, U., and Schmid,F.X 1990.). Replacement of a cis proline simplifies the mechanism of ribonuclease T1 folding. Biochemistry 29: 6475–6480.

    Article  CAS  PubMed  Google Scholar 

  32. Ikehara, M., Ohtsuka, E., Tokunaga, T., Nishikawa, S., Uesugi, S., Tanaka, T. et al. 1986. Inquiries into the structure-function relationship of ribonuclease T1 using chemically synthesized coding sequences. Proc. Natl. Acad. Sci. USA 83: 4695–4699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith, G.P. and Scott, J.K. 1993. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228–257.

    Article  CAS  PubMed  Google Scholar 

  34. Greener, A., Callahan, M. and Jerpseth, B. 1997. An efficient random mutagenesis technique using an £ coli mutator strain. Mol. Biotechnol. 7: 189–195.

    Article  CAS  PubMed  Google Scholar 

  35. Geiger, T. and Clarke, S., 1987. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 262: 785–794.

    CAS  PubMed  Google Scholar 

  36. Stemmer, W.P. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution.Proc. Natl. Acad. Sci. USA 91: 10747–10751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crameri, A., Cwirla, S. and Stemmer, W.P. 1996. Construction and evolution of antibody-phage libraries by DNA shuffling. Nat. Med 2.100 102.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, H., Gilver, L., Shao, Z., Affholter, J.A. and Arnold, F.H. 1998.Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16: 258–261.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, H.X., Hoess, R.H. and DeGrado, W.F. 1996. In vitro evolution of thermodynamically stable turns. Nat. Struct. Biol. 3: 446–451.

    Article  CAS  PubMed  Google Scholar 

  40. Skinner, M.M. and Terwilliger, T.C. 1996. Potential use of additivity of mutational effects in simplifying protein engineering. Proc. Natl. Acad. Sci. USA 93: 10753–10757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quaas, R., Grunert, H.-R., Kimura, M. and Hahn, U. 1988. Expression of ribonuclease T1 in Escherichia coli and rapid purification of the enzyme. Nucleosides & Nucleotides 7: 619–623.

    Article  CAS  Google Scholar 

  42. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular cloning-a laboratory manual. Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York.

  43. Horton, R.M. and Pease, L.R. 1991. Recombination and mutagenesis of DNA sequences using PCR,. pp. 217–247 in Directed mutagenesis-a practical approach. McPherson, M.J. (ed). IRL Press, Oxford, UK.

    Google Scholar 

  44. Mayr, L.M. and Schmid, F.X. 1993. A purification method for labile variants of ribonuclease T1.Protein Expr. Purif. 4: 52–58. 1993.

    Article  CAS  PubMed  Google Scholar 

  45. Santoro, M.M. and Bolen, D.W. 1988. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α-chymotrypsin using different denaturants. Biochemistry 27: 8063–8068.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieber, V., Plückthun, A. & Schmid, F. Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16, 955–960 (1998). https://doi.org/10.1038/nbt1098-955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1098-955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing