Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress

Abstract

Transgenic tobacco seedlings that overexpress a cDNA encoding an enzyme with both glutathione S-transferase (GST) and glutathione peroxidase (GPX) activity had GST- and GPX-specific activities approximately twofold higher than wild-type seedlings. These GST/GPX overexpressing seedlings grew significantly faster than control seedlings when exposed to chilling or salt stress. During chilling stress, levels of oxidized glutathione (GSSG) were significantly higher in transgenic seedlings than in wild-types. Growth of wild-type seedlings was accelerated by treatment with GSSG, while treatment with reduced glutathione or other sulfhydryl-reducing agents inhibited growth. Therefore, overexpression of GST/GPX can stimulate seedling growth under chilling and salt stress, and this effect could be caused by oxidation of the glutathione pool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Coles, B. and Ketterer, B. 1990. The role of glutathione and glutathione S-trans-ferases in chemical carcinogenesis. CRC Crit. Rev. Biochem. 25: 47–70.

    Article  CAS  Google Scholar 

  2. Mannervik, B. and Danielson, U.H. 1988. Glutathione transferases: structure and catalytic activity. CRC Crit. Rev. Biochem. 23: 283–337.

    Article  CAS  Google Scholar 

  3. Pickett, B. and Lu, A.Y.H., 1989. S-transferases: gene structure, regulation, and biological function. Annu. Rev. Biochem. 58: 743–76.

    Article  CAS  Google Scholar 

  4. Hatzios, K.K. 1989. pp. 65ndash;101 in Crop safeners for herbicides: development, uses and mechanisms of action. Hatzios, K. and Hoagland, R. (eds.) Academic Press Inc., New York, NY.

    Book  Google Scholar 

  5. Ulmasov, T., Ohmiya, A., Hagen, G., and Guilfoyle, T. 1995. The soybean GH2/4 gene that encodes a glutathione s-transferase has a promoter that is activated by a wide range of chemical agents. Plant Physiol. 108: 919–927.

    Article  CAS  Google Scholar 

  6. Roxas, V.P. 1996. Molecular analysis and expression of GST-coding genes in tobacco. Ph.D. Dissertation, Texas Tech University, Lubbock, TX.

    Google Scholar 

  7. Fuerst, E.P., Irzyk, G.P., and Miller, K.D. 1993. Partial characterization of GST isozymes induced by the herbicide safener benoxacor in maize. Plant Physiol. 102: 795–802.

    Article  CAS  Google Scholar 

  8. Berhane, K., Widersten, M., Engstrom, A., Kozarich, J.W., and Mannervik, B. 1994. Detoxification of base propenals and other α,β unsaturated aldehyde products of radical reactions and lipid peroxidation by GSTs. Proc. Natl. Acad. Sci. USA 91: 1480–1484.

    Article  CAS  Google Scholar 

  9. Bartling, D., Radzio, R., Steiner, U., and Weiler, E. 1993. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana: molecular cloning and functional characterization. Eur. J. Biochem. 216: 579–586.

    Article  CAS  Google Scholar 

  10. Criqui, M.C., Jamet, E., Parmentier, Y., Marbach, J., Durr, A., and Fleck, J. 1992. Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases. Plant Mol. Biol. 18: 623–627.

    Article  CAS  Google Scholar 

  11. Beeor-Tzahar, T., Ben-Hayyim, G., Holland, D., Faltin, Z., and Eshdat, Y. 1993. A stress-associated protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase. FEBS Lett. 366: 151–155.

    Article  Google Scholar 

  12. Allen, R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1–7.

    Article  Google Scholar 

  13. Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., et al. 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 10: 1723–1732.

    Article  CAS  Google Scholar 

  14. Sen Gupta, A., Webb, R.P., Holaday, A.S., and Allen, R.D. 1993. Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol. 103: 1067–1073.

    Article  CAS  Google Scholar 

  15. Van Camp, W., Capiau, K., Van Montague, M., Inzé, D., and Slooten, L. 1996. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 112: 1703–1714.

    Article  CAS  Google Scholar 

  16. Aono, M., Kubo, A., Saji, H., Tanaka, K., and Kondo, N. 1993. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloro-plastic glutathione reductase activity. Plant Cell Physiol. 34: 129–136.

    CAS  Google Scholar 

  17. Broadbent, P., Creissen, G.P., Kular, B., Wellbum, A.R., and Mullineaux, P. 1995. Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J. 8: 247–255.

    Article  CAS  Google Scholar 

  18. Foyer, C.H., Lelandais, M., Galap, C., and Kunert, K.J. 1991. Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97: 863–872.

    Article  CAS  Google Scholar 

  19. Droog, F.N.J., Hooykaas, P.J.J., Libbenga, K.R., and van der Zaal, E.J. 1993. Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Mol. Biol. 21: 965–972.

    Article  CAS  Google Scholar 

  20. Takahashi, Y. and Nagata, T. 1992. parB: An auxin-regulated gene encoding glutathione S-transferase. Proc. Natl. Acad. Sci. USA 89: 56–59.

    Article  CAS  Google Scholar 

  21. Webb, R.W. 1995. Isolation, characterization, and overexpression of pea cytosolic ascorbate peroxidase. Ph.D. Dissertation. Texas Tech University, Lubbock, TX.

    Google Scholar 

  22. Alscher, RG. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant. 77: 457–464.

    Article  CAS  Google Scholar 

  23. Brigelius, R. 1985. pp. 243–272 in Oxidative stress. Sies, H. (ed.) Academic Press Inc., London.

    Book  Google Scholar 

  24. Wolin, M.S. and Mohazzab-H, K.M. 1996. pp. 21–48 in Oxidative stress and the molecular biology of antioxidant defenses. Scandalios, J.G. (ed.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  25. Lozano, M., Wong, J.H., Yee, B.C., Peters, A., Kqbrehel, K., and Buchanan, B.B. 1996. New evidence for a role for thioredoxin h in germination and seedling development. Planta 200: 100–106.

    Article  CAS  Google Scholar 

  26. Wingate, V.P.M., Lawton, M.A., and Lamb, C.J. 1988. Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 87: 206–210.

    Article  CAS  Google Scholar 

  27. Habig, W.H. and Jakoby, W.A. 1981. Assays for differentiation of GST. Methods Enzymol. 77: 735–740.

    Google Scholar 

  28. Mozer, T.J., Tiemeier, D.C., and Jaworksi, E.G. 1983. Purification and characterization of corn glutathione S-transferase. Biochem. 22: 1068–1072.

    Article  CAS  Google Scholar 

  29. Tappel, A.L. 1978. Glutathione peroxidase and hydroperoxidase. Methods Enzymol. 52: 506–513.

    Article  CAS  Google Scholar 

  30. Horsch, R.B., Fry, J.E., Hofman, N.J., Eicholtz, D., Rogers, S.G., and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 119–123.

    Google Scholar 

  31. Griffith, O.W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106: 207–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy D. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roxas, V., Smith, R., Allen, E. et al. Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15, 988–991 (1997). https://doi.org/10.1038/nbt1097-988

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1097-988

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing