Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Process Synthesis for Multi-Step Microbial Conversions

Abstract

Developments in recombinant DNA technology are now allowing the controlled use of metabolic pathways to carry out a series of sequential organic chemical reactions using a single microbial catalyst. Biological processes of this type have significant industrial potential but in many cases still require the necessary biochemical engineering to translate them into a scalable process. Process synthesis is the systematic application of heuristics to the design of processes. Its application has enabled many chemical processes to be develped rapidly and feasibility assessed at an early stage in development Here we apply such techniques to the area of multi-step microbial conversions (the use of metabolic pathway engineering to produce industrially useful chemicals). Biological and process engineering issues which require more research are identified. The use of the aromatic oxidation pathway serves as an illustrative example

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roberts, S.M. and Turner, N.J. 1992. Some recent developments in the use of enzyme catalysed reactions in organic synthesis. J. Biotech 22: 227–244.

    Article  CAS  Google Scholar 

  2. Dordick, J.S. (Ed.). 1990. Biocatalysts for Industry. Plenum Press, New York.

  3. Kieslich, K. 1991. Biotransformations of industrial use. Acta Biotechnol. 11: 559–570.

    Article  CAS  Google Scholar 

  4. Lilly, M.D. 1992. Design and operation of biotransformation processes, p. 47–68. In: Recent Advances in Biotechnology. F. Vardar-Sukan and S. S. Sukan (Eds.). Kluwer Academic, Amsterdam.

    Chapter  Google Scholar 

  5. Lilly, M.D. and Woodley, J.M. 1985. Biocatalytic reactions involving water-insoluble organic compounds, p. 179–192, In: Biocatalysts in Organic Syntheses. I. Tramper, H. C. van der Plas and P. Linko (Eds.). Elsevier, Amsterdam.

    Google Scholar 

  6. Klibanov, A.M. 1986. Enzymes that work in organic solvents. Chemtech 16: 354–359.

    CAS  Google Scholar 

  7. Woodley, J.M. and Lilly, M.D. 1992. Process engineering of two-liquid phase biocatalysis, p. 147–154. In: Biocatalysis in Non-Conventional Media. J. Tramper, H. H. Beeftink and TJ. von Stacker (Eds.). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  8. Woodley, J.M. and Lilly, M.D. 1994. Biotransformation reactor selection and operation, p. 371–393. In: Applied Biocatalysis. J. Cabral, D. Best, L. Boross and J. Tramper (Eds.). Harwood Academic, Chur.

    Google Scholar 

  9. Falch, E. 1991. Industrial enzymes—developments in production and application. Biotech. Adv. 9: 643–658.

    Article  CAS  Google Scholar 

  10. Graycar, T.P. 1991. Protein engineering of subtilisin, p. 257–283. In: Biocatalysts for Industry. J. S. Dordick (Ed.). Plenum Press, New York.

    Chapter  Google Scholar 

  11. Chen, K. and Arnold, F.H. 1991. Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media. Bio/Technology 9: 1073–1077.

    Article  CAS  Google Scholar 

  12. Bailey, J.E. 1991. Toward a science of metabolic engineering. Science 252: 1668–1675.

    Article  CAS  PubMed  Google Scholar 

  13. Rudd, D.F., Powers, G.J. and Siirola, J.J. 1973. Process Synthesis. Prentice-Hall, New Jersey.

  14. Gandikota, M.S., Davis, J.F., Yang, S.-T. and Marchio Jr., J. 1992. Bioprocess flowsheets made easy. Chemtech 22: 694–699.

    CAS  Google Scholar 

  15. Hack, C.J. 1992. Biochemical engineering studies of cis-glycol production. PhD Thesis, University of London, UK.

  16. Woodley, J.M. and Lilly, M.D. 1990. Extractive biocatalysis: the use of two-liquid phase biocatalytic reactors to assist product recovery. Chem. Eng. Sci. 45: 2391–2396.

    Article  CAS  Google Scholar 

  17. Gbewonyo, K., Buckland, B.C. and Lilly, M.D. 1991. Development of a large-scale continuous substrate feed process for the biotransformation of sim-vastatin by Nocardia sp. Biotechnol. Bioeng. 37: 1101–1107.

    Article  CAS  PubMed  Google Scholar 

  18. van den Tweel, W.J.J., Mersman, E.H., Vorage, M.J.A.W., Tramper, J. and de Bont, J.A.M. 1987. The application of organic solvents for the bio-conversion of benzene to cis-benzeneglycol, p. 231–241. In: Bioreactors and Biotransformations. G. W. Moody and P. B. Baker (Eds.). Elsevier, Amsterdam.

    Google Scholar 

  19. Regan, L., Bogle, I.D.L. and Dunnill, P. 1992. Simulation and optimization of metabolic pathways. Comp. Chem. Eng. 16: 237–247.

    Article  Google Scholar 

  20. Regan, L., Bogle, I.D.L., Ward, J.M. and Dunnill, P. 1993. Initial control analysis of the TOL meta-cleavage pathway, p. 87–89. In: Proc. 1993 IChemE Research Event, IChemE, Rugby.

    Google Scholar 

  21. Holms, W.H., Hamilton, I.D. and Mousdale, D. 1990. Application of flux analysis to increase productivity of fermentation processes, p. 1057–1062. In: 5th European Congress on Biotechnology, Copenhagen, Proceedings Vol. 2. C. Christiansen, L. Munck, and J. Villadsen (Eds.). Munksgaard, Copenhagen.

    Google Scholar 

  22. Vallino, J.J. and Stephanopoulos, G. 1990. Intracellular flux analysis as means of identifying limiting nodes in amino acid fermentations, p. 1063–1066. In: 5th European Congress on Biotechnology, Copenhagen, Proceedings Vol. 2. Christiansen, L. Munck and J. Villadsen (Eds.). Munksgaard, Copenhagen.

    Google Scholar 

  23. Mattiasson, B. and Holst, O. 1991. Extractive Bioconversions. Marcel Dekker, New York.

  24. Freeman, A., Woodley, J.M. and Lilly, M.D. 1993. In situ product removal as a tool for bioprocessing—an overview. Bio/Technology 11: 1007–1012.

    CAS  Google Scholar 

  25. Daugulis, A.J. 1988. Integrated reaction and product recovery in bioreactor systems. Biotechnol. Prog. 4: 113–122.

    Article  CAS  Google Scholar 

  26. Yamada, K., Kinoshita, S., Tsunoda, T. and Aida, K. 1972 (Eds.). The microbial production of amino acids. Halsted Press, New York.

  27. Mattiasson, B. and Larsson, M. 1985. Extractive bioconversions with emphasis on solvent production. Biotechnol. Gen. Eng. Rev. 3: 137–174.

    Article  CAS  Google Scholar 

  28. Harrop, A.J., Woodley, J.M. and Lilly, M.D. 1992. Production of naphlhalene-cis-glycol by Pseudomonas putida in the presence of organic solvents. Enzyme Microb. Technol. 14: 725–730.

    Article  CAS  Google Scholar 

  29. Kaasgaard, S., Karlsen, L., Schneider, I. 1992. Process for separation of two solid components. Patent WO 92/12782.

  30. Yoshikawa, N., Mizuno, S., Ohta, K. and Suzuki, M. 1990. Microbial production of cis, cis-muconic acid. J. Biotechnol. 14: 203–210.

    Article  CAS  Google Scholar 

  31. Box, G.E., Hunter, W.G. and Hunter, J.S. 1978. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. Wiley, New York.

  32. Barker, T.B. 1985. Quality By Experimental Design. Marcel Dekker Inc., New York.

  33. Haaland, P.D. 1989. Experimental Design in Biotechnology. Marcel Dekker Inc., New York.

  34. Lilly, M.D. and Dunnill, P. 1971. Biochemical Reactors. Process Biochem. 6: 29–32.

    CAS  Google Scholar 

  35. Lilly, M.D. and Dunnill, P. 1976. Immobilized-enzyme reactors, p. 717–738. In: Methods in Enzymology XLIV Immobilized Enzymes. K. Mosbach (Ed.). Academic Press, New York.

    Chapter  Google Scholar 

  36. Woodley, J.M. 1992. Reactor engineering for multiphasic biotransformations, p. 146–149. In: Harnessing Biotechnology for the 21st Century. M. R. Ladisch and A. Bose (Eds.). Amer. Chem. Soc., Washington.

    Google Scholar 

  37. Lehrbach, P.R. and Timmis, K.N. 1983. Genetic analysis and manipulation of catabolic pathways in Pseudomonas. In: Biotechnology. C. F. Phelps and P. H. Clarke (Eds.). Biochem. Soc. Symp. 48: 191–219.

    Google Scholar 

  38. Chater, K.F. 1990. The improving prospects for yield increase by genetic engineering in antibiotic-producing streptomycetes. Bio/Technology 8: 115–121.

    CAS  Google Scholar 

  39. Skatrud, P.L. 1992. Genetic engineering of ß-lactam antibiotic biosynthetic pathways in filamentous fungi. TIBTECH 10: 324–329.

    Article  CAS  Google Scholar 

  40. Sahm, H. 1990. Metabolic design in amino acid-producing bacteria, p. 956–966. In: 5th European Congress on Biotechnology, Copenhagen, Proceedings Vol. 1. C. Christiansen, L. Munck and J. Villadsen (Eds.). Munksgaard, Copenhagen.

    Google Scholar 

  41. Picataggio, S., Rohver, T., Deander, K., Lanning, D., Reynolds, R., Mielenz, J. and Eirich, L.D. 1992. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Bio/Technology 10: 894–898.

    CAS  Google Scholar 

  42. Backman, K., O'Connor, M.J., Maruya, A., Rudd, E., McKay, D., Balakrishnan, R., Radjai, M., DiPasquantonio, V., Shoda, D., Hatch, R. and Venkatasubramanian, K. 1990. Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann. N.Y. Acad. Sci. 589: 16–24.

    Article  CAS  PubMed  Google Scholar 

  43. Fell, D.A. 1992. Metabolic Control Analysis: a survey of its theoretical and experimental development. Biochem. J. 286: 313–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson, G.K., Stephens, G.M., Dalton, H. and Geary, P.J. 1992. The production of catechols from benzene and toluene by Pseudomonas putida in glucose fed-batch culture. Biocatalysis 6: 81–100.

    Article  CAS  Google Scholar 

  45. Maxwell, P., Voloch, M., Lynch, J. and Rozzell, J.D. 1990. Metabolic pathway engineering for the production of new chemicals, p. 255–258. In: 5th European Congress on Biotechnology, Copenhagen, Proceedings Vol. 1. C. Christiansen, L. Munck and J. Villadsen (Eds.). Munksgaard, Copenhagen.

    Google Scholar 

  46. Matcham, G.W., Giannousis, A., Adamus, J.E., Pegram, C. and Stirling, D.I. 1992. Production of pyridine dicarboxylic acids via meta cleavage pathways. SIM Annual Mtg, San Diego, CA.

  47. Jenkins, R.O., Stephens, G.M. and Dalton, H. 1987. Production of toluene cis-glycol by Pseudomonas putida in glucose fed-batch culture. Biotechnol. Bioeng. 29: 873–883.

    Article  CAS  PubMed  Google Scholar 

  48. Reineke, W. 1986. Construction of bacterial strains with novel degradative capabilities for chloroaromatics. J. Basic Microbiol. 26: 551–567.

    Article  CAS  PubMed  Google Scholar 

  49. Ramos, J.L., Wasserfallen, A., Rose, K. and Timmis, K.N. 1987. Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235: 593–596.

    Article  CAS  PubMed  Google Scholar 

  50. Mermod, N., Harayama, S. and Timmis, K.N. 1986. New route to bacterial production of indigo. Bio/Technology 4: 321–324.

    CAS  Google Scholar 

  51. Ensley, B.D., Ratzkin, B.J., Osslund, T.D., Simon, M.J., Wackett, L.P. and Gibson, D.T. 1983. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222: 167–169.

    Article  CAS  PubMed  Google Scholar 

  52. Assinder, S.J. and Williams, P.A. 1990. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv. Microbiol Phys. 31: 1–69.

    Article  CAS  Google Scholar 

  53. Williams, P.A. and Murray, K. 1974. Metabolism of benzoate and the methyl-benzoates by Pseudomonas putida (orvilla) mt-2: evidence for the existence of the TOL plasmid. J. Bacteriol. 120: 416–423.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Draths, K.M. and Frost, J.W. 1994. Environmentally compatible synthesis of adipic acid from D-glucose. J. Am. Chem. Sec. 116: 399–400.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Woodley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, C., Woodley, J. Process Synthesis for Multi-Step Microbial Conversions. Nat Biotechnol 13, 1072–1078 (1995). https://doi.org/10.1038/nbt1095-1072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1095-1072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing