Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

A Simple and Sensitive High–Throughput Assay for Steroid Agonists and Antagonists

Abstract

We have developed a simple and highly sensitive tissue culture–based assay for the biological activity of steroids and synthetic steroidal compounds. A DNA cassette, containing a synthetic steroid–inducible promoter controlling the expression of a bacterial chloramphenicol acetyltransferase gene (GRE5–CAT), was inserted into an Epstein–Barr virus (EBV) episomal vector which replicates autonomously in primate and human cells. We then used this promoter/reporter system to generate two stably transfected human cell lines. In the cervical carcinoma cell line HeLa, which expresses high levels of glucocorticoid receptor, the GRE5 promoter is inducible over 100–fold by the synthetic glucocorticoid dexamethasone. In the breast carcinoma cell line T47D, which expresses progesterone and androgen receptors, the GRE5 promoter is inducible over 100–fold by either progesterone or dihydrotestosterone. In both cell lines basal expression of CAT activity is strictly dependent on the presence of steroid, so that very low levels of induction can be detected. Thus, the cell lines can be used to test for low levels of agonist activity in steroid antagonists. These cell lines can be used to screen compounds for steroid agonist or antagonist activity by testing extracts of cells grown in microtiter wells directly using a colorimetric CAT assay. This system should provide a sensitive and efficient method for screening and analysis of the activity of large numbers of natural or synthetic steroid agonists or antagonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Green, S. and Chambon, P. 1988. Nuclear receptors enhance our understanding of transcriptional regulation. Trends in Genet. 4: 309–314.

    Article  CAS  Google Scholar 

  2. Evans, R.M. 1988. The steroid and thyroid hormone receptor family. Science 240: 889–895.

    Article  CAS  Google Scholar 

  3. Wahli, W. and Martinez, M. 1991. Superfamily of steroid nuclear receptors: positive and negative regulators of transcription FASEB J. 5: 2243–2249.

    Article  CAS  Google Scholar 

  4. Gronemeyer, H. 1991. Transcription activation by estrogen and progesterone receptors Ann. Rev. Genet. 25: 89–123.

    Article  CAS  Google Scholar 

  5. Tora, L., White, J.H., Brou C., Tasset, D., Webster, N., Scheer, E. and Chambon, P. 1989. The human estrogen receptor has two independent transcriptional activation functions. Cell 59: 477–487.

    Article  CAS  Google Scholar 

  6. Martinez, E., Givel, F. and Wahli, W. 1987. The estrogen-responsive element as an inducible enhancer: DNA sequence requirements and conversion to a glucocorticoid-responsive element EMBO J. 6: 3719–3727.

    Article  CAS  Google Scholar 

  7. Jantzen, H.M., Strahle, U., Gloss, B., Stewart, F., Schmid, W., Boshart, M., Miksicek, R. and Schutz, G. 1987. Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 49: 29–38.

    Article  CAS  Google Scholar 

  8. Burch, J.B.E., Evans, M.I., Friedman, T.M. and O'Malley, P.J. 1988. Two functional estrogen response elements are located upstream of the major chicken vitellogenin gene. Mol. Cell. Biol. 8: 1123–1131.

    Article  CAS  Google Scholar 

  9. Ponglikitmongkol, M., White, J.H. and Chambon, P. 1990. Synergistic activation of transcription by estrogen receptors bound to tandem responsive elements. EMBO J. 9: 2221–2231.

    Article  CAS  Google Scholar 

  10. Mader, S. and White, J.H. 1993. A steroid-inducible promoter for the controlled overexpression of cloned genes. Proc. Nat. Acad Sci. USA 90: 5603–5607.

    Article  CAS  Google Scholar 

  11. Hambor, J.E., Hauer, C.A., Shu, H.-K., Groger, R.K., Kaplan, D.R. and Tykocinski, M.R. 1988. Use of an Epstein-Barr virus episomal replicon for anti-sense RNA-mediated gene inhibition in a human cytotoxic T-cell clone. Proc. Nat. Acad Sci. USA 85: 4010–4014.

    Article  CAS  Google Scholar 

  12. Horwitz, K.B., Mockus, M.B. and Lessey, B.A. 1982. Variant T47D human breast cancer cells with high progesterone-receptor levels despite estrogen and antiestrogen resistance. Cell 28: 633–642.

    Article  CAS  Google Scholar 

  13. Keydar, I., Chen, L., Karby, S., Weiss, F.R., Delarea, J., Radu, M., Chaitcik, S. and Brenner, H.J. 1979. Establishment of a cell line of human breast carcinoma origin. Eur. J. Cancer. 15: 659–670.

    Article  CAS  Google Scholar 

  14. Shaw, W.V. 1974. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Meth. Enzymol. 43: 737–755.

    Article  Google Scholar 

  15. Ellman, G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–73.

    Article  CAS  Google Scholar 

  16. Philibert, D., Costerousse, G., Gaillard-Moguilewsky, M., Nedelec, L., Nique, F., Tournemine, C. and Teusch, G. 1991. From RU38486 towards dissociated antiglucocorticoid and antiprogesterone, p. 1–17. In: Antihormones in Health and Disease. Front Horm. Res. Base., Karger.

    Google Scholar 

  17. Yates, J.L., Warren, N. and Sugden, B. 1985. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313: 812–815.

    Article  CAS  Google Scholar 

  18. Meyer, M.E., Pornon, A., Ji, J.W., Bocquel, M.T., Chambon, P. and Gronemeyer, H. 1990. Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J. 9: 3923–3932.

    Article  CAS  Google Scholar 

  19. Gronemeyer, H., Benhamou, B., Berry, M., Bocquel, M.T., Gofflo, D., Garcia, T., Lerouge, T., Metzger, D., Meyer, M.E., Tora, L. 1992. Mechanisms of steroid hormone action. J. Ster. Biochem. and Mol. Biol. 41: 217–221.

    Article  CAS  Google Scholar 

  20. Kontula, K.K., Seppänen, P.J., Van Duyne, P., Bardin, C.W. and Janne, O.A. 1985. Effect of a nonsteroidal antiandrogen, flutamide, on androgen receptor dynamics and ornithine decarboxylase gene expression in mouse kidney. Endocrinology 116: 226–233

    Article  CAS  Google Scholar 

  21. Vegeto, E., Allan, G.F., Schrader, W.T., Tsai, M.-J., McDonnell, D.P. and O'Malley, B.W. 1992. The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell 69: 703–713.

    Article  CAS  Google Scholar 

  22. Webster, N.J.G., Green, S., Jin, J.-R. and Chambon, P. 1988. The hormone binding domains of the human estrogen and glucocorticoid receptors contain an inducible transcriptional activation function. Cell 54: 199–207.

    Article  CAS  Google Scholar 

  23. Banerji, J., Rusconi, S. and Schaffner, W. 1981. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27: 299–308.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, J., McCuaig, K. & Mader, S. A Simple and Sensitive High–Throughput Assay for Steroid Agonists and Antagonists. Nat Biotechnol 12, 1003–1007 (1994). https://doi.org/10.1038/nbt1094-1003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1094-1003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing