Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxidoreductase Enzymes in Biotechnology: Current Status and Future Potential

Abstract

The variety of chemical transformations catalyzed by enzymes make these catalysts a prime target for exploitation by the emerging biotechnology industries. Over the last two decades, intense research in the area of enzyme technology has provided many approaches that facilitate the practical application of enzymes. This review focuses on oxidoreductases, the large class of enzymes catalyzing biological oxidation/reduction reactions. Since so much industrial chemistry involves oxidation/reduction processes, the use of oxidoreductases to carry out synthetic transformations is a major area of interest. Of particular significance in this regard are oxidoreductase–mediated asymmetric syntheses of amino acids, steroids, and other pharmaceuticals, and of a host of specialty chemicals. Another area of major importance is the current extensive use of oxidoreductases in clinical diagnosis and other analytical applications. Future applications for oxidoreductases can be visualized in areas as diverse as polymer synthesis, pollution control, and oxygenation of hydrocarbons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dixon, M. and Webb, E.C. 1979. p. 11. Enzymes. Academic Press, New York.

  2. Homandberg, G.A. and Laskowski, M., Jr. 1979. Enzymatic resynthesis of the hydrolyzed peptide bond(s) in ribonuclease S. Biochemistry 18: 586–592.

    Article  CAS  PubMed  Google Scholar 

  3. Fink, A.L. and Cartwright, S.J. 1981. Cryoenzymology, p. 145–207. In CRC Critical Reviews in Biochemistry.

    Google Scholar 

  4. May, S.W. and Li, N.N. 1977. Liquid-Membrane Encapsulated Enzymes, p. 171–190. In Biomedical Applications of Immobilized Enzymes and Proteins. Vol. 1. T.M.S. Chang (ed.), Plenum Press, New York.

    Chapter  Google Scholar 

  5. Klibanov, A.M. 1983. Immobilized enzymes as practical catalysts. Science 219: 722–727.

    Article  CAS  PubMed  Google Scholar 

  6. Godfrey, T. and Rerchelt, J. 1983. Industrial Enzymology. The Nature Press, New York.

  7. Zaborsky, O.R. 1973. Immobilized Enzymes. CRC Press, Cleveland, Ohio.

  8. Mosbach, K. (ed.), 1976. Immobilized Enzymes. In Methods Enzymol. 44. Academic Press, New York.

    Google Scholar 

  9. Chibata, I. (ed.), 1978. Immobilized Enzymes in Research and Development. John Wiley and Sons, New York.

  10. Wingard, L.B., Jr., Katchalski-Katzir, E., and Goldstein, L. (eds.), 1976. Immobilized Enzyme Principles. In Applied Biochemistry and Academic Press, New York.

  11. Trevan, M.D. 1980. Immobilized Enzymes: Introduction and Application in Biotechnology. John Wiley and Sons, New York.

  12. Wang, S.S. and King, C.-K. 1979. The use of coenzymes in biochemical reactors. Adv. Biochem. Bioeng. 12: 119–146.

    CAS  Google Scholar 

  13. Chibata, I., Fukui, S. and Wingard, L.B., Jr. (eds.), 1982. Enzyme Engineering, Vol. 6. Plenum Press, New York.

    Book  Google Scholar 

  14. Barman, T.E. 1969. Enzyme Handbook. Springer-Verlag, Berlin.

  15. Lowe, C.R. 1981. Immobilized Coenzymes: Introduction and Application in Biotechnology, p. 13–146. In Topics in Enzyme and Fermentation Technology, Vol. 5. A. Wiseman (ed.). Ellis Horwood, Ltd., Chichester, U.K.

    Google Scholar 

  16. Schmidt, H.L. and Grenner, G. 1976. Coenzyme properties of NAD+ bound to different matrices through the amino group in the 6-position. Eur. J. Biochem. 67: 295–302.

    Article  CAS  PubMed  Google Scholar 

  17. Larsson, P.-O. and Mosbach, K. 1974. The preparation and charac terization of a wafer-soluble coenzymically active dextran-NAD+ FEES Lett. 46: 119–122.

  18. Wandrey, C., Wichmann, R. and Jandel, A.-S. 1982. Mutli-Enzyme Systems in Membrane Reactors, p. 61–67. In Enzyme Engineering, Vol. 6. I. Chibata, S. Fukui, and L. B. Wingard, Jr. (eds.), Plenum Press, New York.

    Chapter  Google Scholar 

  19. Wichmann, R., Wandrey, C., Buckmann, A.F., and Kula, M.R. 1981. Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Biotechnol. Bioeng. 23: 2789–2802.

    Article  CAS  Google Scholar 

  20. Kula, M.-R., Kroner, K.H., Hustedt, H., and Shutte, H. 1982. Scale-up of protein purification by liquid-liquid extraction, p. 69–74. In Enzyme Engineering, Vol. 6. I. Chibata, S. Fukui, and L. B. Wingard, Jr. (eds.), Plenum Press, New York.

    Chapter  Google Scholar 

  21. Wong, C.-H. and Whitesides, G.M. 1981. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phos-phate and the glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103: 4890–4899.

    Article  CAS  Google Scholar 

  22. Godbole, S.S., D'Souza, S.F. and Nadkarni, G.B. 1983. Regeneration of NAD(H) by alcohol dehydrogenase in gel-entrapped yeast cells. Enz. Microb. Technol. 5: 125–128.

    Article  CAS  Google Scholar 

  23. Yamazaki, Y., Maeda, H., and Kamibayashi, A. 1982. The long-term production of L-malate by the coimmobilized NAD and dehydrogenases. Biotechnol. Bioeng. 24: 1915–1918.

    Article  CAS  PubMed  Google Scholar 

  24. Campbell, J. and Chang, T.M.S. 1976. The recycling of NAD+ (free and immobilized) within semipermeable aqueous microcapsules containing a multi-enzyme system. Biochem. Biophys. Res. Commun. 385: 562–569.

    Article  Google Scholar 

  25. Jones, J.B. and Taylor, K.E. 1976. Nicotinamide coenzyme regeneration. The rates of some 1,4-dihydropyridine, pyridinium salt, and flavin mononucleotide hydrogen-transfer reactions. Can. J. Chem. 54: 2974–2980.

    Article  CAS  Google Scholar 

  26. Jones, J.B. and Taylor, K.E. 1973. Use of pyridinium and flavin derivatives for recycling of catalytic amounts of NAD+ during preparative-scale horse liver alcohol dehydrogcnase-catalyzed oxida tion of alcohols. JCS Chem. Comm., p. 205.

  27. Aizawa, M., Coughlin, R.W. and Charles, M. 1975. Electrochemical regeneration of nicotinamide adenine dinucleotide. Biochim. Biophys. Acta 385: 362–370.

    Article  CAS  PubMed  Google Scholar 

  28. Aizawa, M., Suzuki, S., and Kubo, M. 1976. Electrolytic regeneration of NADH from NAD+ with a liquid crystal membrane electrode. Biochim. Biophys. Acta 444: 886–892.

    Article  CAS  PubMed  Google Scholar 

  29. Higgins, I.J., Hammond, R.C., Plotkin, E., Hill, H.A.D., Uosaki, K., Eddowes, M.J., and Cass, A.E.G. 1979. Electroenzymology and biofuel cells, p. 181–193. In Hydrocarbons in Biotechnology. D. E. Harrison, I. J. Higgins, and R. Watkinson (eds.), Institute of Petroleum, London, Heyden and Son, Ltd.

    Google Scholar 

  30. Wingard, L.B., Shaw, C.H. and Castner, J.F. 1982. Bioelectro-chemical fuel cells. Enz. Microb. Technol. 4: 137–142.

    Article  CAS  Google Scholar 

  31. Jones, J.B. and Beck, J.F. 1976. Asymmetric syntheses and resolutions using enzymes. Tech. Chem. 10: 107–401.

    CAS  Google Scholar 

  32. Jones, J.B. 1980. Enzymes in synthetic organic chemistry, p. 54–81. In Enzymatic and Non-Enzymatic Catalysis. P. Dunhill, A. Wiseman, and N. Blakebrough (eds.), Ellis Horwood, Ltd., Chichester, U.K.

    Google Scholar 

  33. Whitesides, G.M. and Wong, C.H. 1983. Enzymes as catalysts in organic synthesis. Aldrichimica Acta 16: 27–34.

    CAS  Google Scholar 

  34. Boyer, P.D. (ed.), 1970. The Enzymes, 3rd. Edition. Academic Press, New York.

    Google Scholar 

  35. Walsh, C. 1979. Enzymatic Reaction Mechanisms. W. H. Freeman and Co., San Francisco.

  36. Boone, J.R. and Ashby, E.C. 1979. Reduction of cyclic and bicyclic ketones by complex metal hydrides, p. 53–95. In Topics in Stereo chemistry, Vol. 11. N. L. Allinger and E. L. Eliel (eds.), John Wiley and Sons, New York.

    Google Scholar 

  37. Wiseman, A. 1981. Alcohol dehydrogenases: immobilisation and applications in analysis and synthesis, p. 337–354. In Topics in Enzyme and Fermentation Biotechnology, Vol. 5. A. Wiseman (ed.), Ellis Horwood, Ltd., Chichester, U.K.

    Google Scholar 

  38. Jones, J.B. 1982. Horse-liver alcohol dehydrogenase: an illustrative example of the potential of enzymes in organic synthesis, p. 107–116. In Enzyme Engineering, Vol. 6. I. Chibata, S. Fukui, and L. B. Wingard, Jr. (eds.), Plenum Press, New York.

    Chapter  Google Scholar 

  39. Prelog, V. 1964. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl. Chem. 9: 119–130.

    Article  CAS  Google Scholar 

  40. Irwin, A.J. and Jones, J.B. 1977. Regiospecific and enantioselective horse liver alcohol dehydrogenase catalyzed oxidations of some hydroxycyclopentanes. J. Am. Chem. Soc. 99: 1625–1630.

    Article  CAS  PubMed  Google Scholar 

  41. Davies, J. and Jones, J.B. 1979. Enzymes in organic synthesis. 16. Heterocyclic ketones as substrates of horse liver alcohol dehydrogenase. Stereospecific reductions of 2-substituted tetrahydrothiopyran-4-ones. J. Am. Chem. Soc. 101: 5405–5410.

    Article  CAS  Google Scholar 

  42. Hou, C.T., Patel, R., Barnabe, N. and Marczak, I. 1981. Stereospecificity and other properties of a novel secondary-alcohol-specific alcohol dehydrogenase. Eur. J. Biochem. 119: 359–364.

    Article  CAS  PubMed  Google Scholar 

  43. Barret, C.H., Dodgson, K.S. and White, G.F. 1981. Specificity and other properties of an alcohol dehydrogenase from Comamonas terrigens, an enzyme exhibiting preference for L-stereoisomers of secondary alcohols. Biochim. Biophys. Acta 661: 74–86.

    Article  Google Scholar 

  44. May, S.W., Steltenkamp, M.S., Borah, K.R., Katopodis, A.G. and Thowsen, J.R. 1979. Enzymatic production of saturated ketones from allylic alcohols. JCS Chem. Comm., p. 845–846.

  45. Lamed, R.J. and Zeikus, J.G. 1981. Novel NADP-linked-aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Bio-chem. J. 195: 183–190.

    CAS  Google Scholar 

  46. Bryant, F. and Ljungdahl, L.G. 1981. Characterization of an alcohol dehydrogenase from Thermoanaerobacter ethanolicus active with ethanol and secondary alcohols. Biochem. Biophys. Res. Comm. 100: 793–799.

    Article  CAS  PubMed  Google Scholar 

  47. Klibanov, A.M., Alberti, B.N. and Zale, S.E. 1982. Enzymatic synthesis of formic acid from H2 and CO2 and production of hydrogen from formic acid. Biotechnol. Bioeng. 24: 25–36.

    Article  CAS  PubMed  Google Scholar 

  48. Danielsson, B., Winqvist, F., Malpote, J.Y. and Mosbach, K. 1982. Regeneration of NADH with immobilized systems of alanine dehydrogenase and hydrogen dehydrogenase. Biotechnol. Lett. 4: 673–678.

    Article  CAS  Google Scholar 

  49. Schneider, K. and Schegel, H.G. 1976. Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16. Biochim. Biophys. Acta 452: 66–80.

    Article  CAS  PubMed  Google Scholar 

  50. Klibanov, A.M. and Puglisi, A.V. 1980. The regeneration of coenzymes using immobilized hydrogenase. Biotechnol. Lett. 2: 445–450.

    Article  CAS  Google Scholar 

  51. See reference 9, p. 168.

  52. Brodelius, P. 1978. Industrial applications of immobilized biocatalysts. Adv. Biochem. Bioeng. 10: 75–129.

    Article  CAS  Google Scholar 

  53. Chibata, I. 1979. Immobilized microbial cells with polyacrylamide gel and carrageenan and their industrial applications, p. 187–202. In Immobilized Microbial Cells, Vol. 106. K. Venkatsubramanian (ed.), ACS Symposium.

    Chapter  Google Scholar 

  54. May, S.W. 1979. Enzymatic epoxidation reactions. Enz. Microb. Technol. 1: 15–22.

    Article  CAS  Google Scholar 

  55. National Science Foundation. 1974. Workshop on fundamental research in homogeneous catalysis as related to U.S. energy problems, Washington, D.C.

  56. Wiseman, A. and King, D.J. 1982. Microbial oxygenases and their potential application, p. 151–206. In Topics in Enzyme and Fermentation Biotechnology, Vol. 6. A. Wiseman (ed.)

    Google Scholar 

  57. Cain, R.B. 1979. Transformations of organic hydrocarbons, p. 99–132. In Hydrocarbons in Biotechnology, D. E. Harrison, I. J. Higgins, and R. Watkinson (eds.), Institute of Petroleum, London, Heyden and Son, Ltd.

    Google Scholar 

  58. Dalton, H. 1980. Oxidations of hydrocarbons by methane monooxygenases from a variety of microbes. Adv. Appl. Microbiol. 26: 71–87.

    Article  CAS  Google Scholar 

  59. Dalton, H. 1979. Transformations by methane monooxygenase, p. 85–97. In Hydrocarbons in Biotechnology, D. E. Harrison, I. J. Higgins, and R. Watkinson (eds.), Institute of Petroleum, London, Heyden and Son, Ltd.

    Google Scholar 

  60. Higgins, I.J., Best, D.J. and Hammond, R.C. 1980. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature 286: 561–564.

    Article  CAS  PubMed  Google Scholar 

  61. Colby, J., Stirling, D.I., and Dalton, H. 1977. The soluble methane monooxygenase of Methylococcus capsulatus (Bath). Biochem. J. 165: 395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hou, C.-T., Patel, R.N., and Laskin, A.I. 1980. Epoxidation and ketone formation by Cl-utilizing microbes. Adv. App. Microbiol. 26: 41–69.

    Article  CAS  Google Scholar 

  63. Patel, R.N., Hou, C.-T., Laskin, A.I., Felix, A. and Derelanko, P. 1980. Microbial oxidation of gaseous hydrocarbons: production of secondary alcohols from corresponding n-alkanes by methane-utilizing bacteria. Appl. Environ. Microbiol. April: 720–726.

    Article  Google Scholar 

  64. Patel, R.N., Hou, C.-T., Laskin, A.I., Felix, A. and Derelanko, P. 1980. Microbial oxidation of gaseous hydrocarbons: production of secondary alcohols from corresponding n-alkanes by methane-utilizing bacteria. Appl. Environ. Microbiol. April: 727–733.

    Article  Google Scholar 

  65. Peterson, J.A., Basu, D. and Coon, M.J. 1966. Enzymatic ω-oxidation. I. Electron carriers in fatty acid and hydrocarbon hydroxylation. J. Biol. Chem. 241: 5162–5164.

    Article  CAS  PubMed  Google Scholar 

  66. May, S.W. and Abbott, B.J. 1972. Enzymatic epoxidation. I. Alkene epoxidation by the ω-hydroxylase system of Pseudomonas oleovorans. Biochem. Biophys. Res. Comm. 48: 1230–1234.

    Article  CAS  PubMed  Google Scholar 

  67. May, S.W. and Abbott, B.J. 1973. Enzymatic epoxidation: comparison between the epoxidation and hydroxylation system of Pseudomonas oleovorans. J. Biol. Chem. 248: 1725–1730.

    Article  CAS  PubMed  Google Scholar 

  68. May, S.W. and Schwartz, R.D. 1974. Stereoselective epoxidation of octadiene catalyzed by an enzyme system of Pseudomonas oleovorans. J. Am. Chem. Soc. 96: 4031.

    Article  CAS  PubMed  Google Scholar 

  69. May, S.W., Steltenkamp, M.S., Schwartz, R.D. and McCoy, C.J. 1976. Stereoselective formation of diepoxides by an enzyme system of Pseudomonas oleovorans. J. Am. Chem. Soc. 98: 7856–7858.

    Article  CAS  PubMed  Google Scholar 

  70. May, S.W., Gordon, S.L. and Steltenkamp, M.S. 1977. Enzymatic epoxidation of trans, trans-l, 8-dideutero-l, 7-octadiene. Analysis using partially relaxed proton fourier transform NMR. J. Am. Chem. Soc. 99: 2017–2024.

    Article  CAS  PubMed  Google Scholar 

  71. See, J.D., Morrison and Mosher, H.S., “Asymmetric Organic Reactions”, Prentice Hall, Englewood Cliffs, NJ, 1971, p. 258–262 and references cited therein, and also G. Berti, Top. Stereochem. 7: 93 (1973). It has long been recognized that the directive effect of allylic alcohols gives rise to varying degrees of stereoselectivity in epoxidation of these compounds by various chemical agents. However, even with the use of chiral epoxidizirig agents, only very low optical yields (ca. 5%) of optically active epoxides are obtained from simple prochiral olelins (such as octadiene).

  72. May, S.W., Wimalasena, K. and Katopodis, A.G. Unpublished results.

  73. deBont, J.A.M., van Ginkel, C.G., Tramper, J., and Luyben, K.Ch.A.M. 1983. Ethylene oxide production by immobilized myco-bacterium pyl in a gas-solid bioreactor. Enz. Microb. Technol. 5: 55–59.

    Article  CAS  Google Scholar 

  74. Hou, C.T., Patel, R.N. and Laskin, A.I. 1982. Microbiological epoxidation process. U.S. patent 4,347,319.

  75. Hou, C.T. 1982. Production of epoxides such as propylene oxide using packed catalytic bed containing moist resting cells exhibiting oxygenase activity. U.S. Patent 4,348,476.

  76. deSmet, M.J. 1983. A biotechnological approach to the synthesis of epoxides. Biotechnol. Bioeng. 25: 1161–1162.

    Article  CAS  Google Scholar 

  77. Larsson, P.-O., Ohlson, S. and Mosbach, K. 1979. Transformation of steroids by immobilized living microorganisms. Appl. Biochem. Bioeng. 2: 291–301.

    Article  CAS  Google Scholar 

  78. Kolot, F.B. 1982. Microbial catalysts for steroid transformations. Part 1. Process Biochem. Nov./Dec.: 12–18.

  79. Koshcheyenko, K.A., Turkina, M.V. and Skryabin, G.K. 1983. Immobilization of living microbial cells and their application for steroid transformations. Enz. Microb. Technol. 5: 14–21.

    Article  CAS  Google Scholar 

  80. Demain, A.L. 1981. Industrial microbiology. Science 214: 987–995.

    Article  CAS  PubMed  Google Scholar 

  81. Peterson, D.H. and Murray, H.C. 1952. Microbiological oxygen-ation of steroids at carbon 11. J. Am. Chem. Soc. 74: 1871–1872.

    Article  CAS  Google Scholar 

  82. Aharnowitz, Y. and Cohen, G. 1981. The microbiological production of pharmaceuticals. Sci. Am. 245: 141–152.

    Google Scholar 

  83. May, S.W. and Phillips, R.S. 1980. Asymmetric sulfoxidation by dopamine-β-hydroxylase, an oxygenase heretofore considered spe cific for methylene hydroxylation. J. Am. Chem. Soc. 102: 5981–5983.

    Article  CAS  Google Scholar 

  84. May, S.W., Phillips, R.S., Mueller, P.W. and Herman, H.H. 1981. Dopamine-β-hydroxylase: comparison of enzymatic ketonization of the product enantiomer, S-octopamine. J. Biol. Chem. 256: 2258–2261.

    Article  CAS  PubMed  Google Scholar 

  85. May, S.W., Phillips, R.S., Herman, H.H. and Mueller, P.M. 1982. Bioactivation of Catha edulis alkaloids: enzymatic ketonization of norpseudoephedrine. Biochem. Biophys. Res. Comm. 104: 38–44.

    Article  CAS  PubMed  Google Scholar 

  86. May, S.S., Phillips, R.S., Mueller, P.M. and Herman, H.H. 1981. Dopamine-β-hydroxylase: comparative specificities and mechanisms of the oxygenation reactions. J. Biol. Chem. 256: 8470–8475.

    Article  CAS  PubMed  Google Scholar 

  87. May, S.W., Mueller, P.W., Padgette, S.R., Herman, H.H. and Phillips, R.S. 1983. Dopamine-β-hydroxylase: suicide inhibition by the novel olefinic substrate, l-phenyl-l-aminomethyletherie. Bio chem. Biophys. Res. Comm. 110: 161–168.

    Article  CAS  Google Scholar 

  88. May, S.W. and Roberts, S.F. Unpublished results.

  89. Richter, G. 1983. Glucose oxidase. In Industrial Enzymology. T. Godfrey and J. Reichelt (eds.), Nature Press, New York.

    Google Scholar 

  90. Szwajcer, E., Brodelius, P. and Mosbach, K. 1982. Production of α-keto acids: 2. Immobilized cells of Provedencia sp. PCM 1298 containing L-amino acid oxidase. Enz. Microb. Technol. 4: 409–.

    Article  CAS  Google Scholar 

  91. Alberti, B.N. and Klibanov, A.M. 1982. Preparative production of hydroquinone from benzoquinone catalyzed by immobilized D-glucose oxidase. Enz. Microb. Technol. 4: 47–49.

    Article  CAS  Google Scholar 

  92. Morrison, M. and Schonbaum, G.R. 1976. Peroxidase-catalyzed reactions. Ann. Rev. Biochem. 45: 935–988.

    Article  Google Scholar 

  93. Manthey, J.A. and Hager, L.P. 1982. Purification and properties of bromoperoxidase from Penicittus capitatus. J. Biol. Chem. 256: 11232–11238.

    Article  Google Scholar 

  94. Geigert, J., Neidleman, S.L., and Dalietos, D.J. 1983. Novel halo-peroxidase substrates. J. Biol. Chem. 258: 2273–2277.

    Article  CAS  PubMed  Google Scholar 

  95. Neidleman, S.L., Amon, W.F. and Geigert, J. 1981. Method of producing epoxides and glycols from alkenes. U.S. Patent 4,247,641.

  96. Eveleigh, D.E. 1981. The microbial production of industrial chemicals. Sci. Am. 245: 155–178.

    Article  Google Scholar 

  97. See reference 90, p. 156.

  98. McElvany, K.D., Knoght, L.C., Welch, M.J., Siuda, J.F., Theiler, R.F. and Hager, L.P. 1979. Use of bromoperoxidase, an algal enzyme, in the preparation of radiobrominated proteins. In Marine Algae in Pharmaceutical Science, H. A. Hoppe, T. Levring, and Y. Tanka (eds.), Walter de Gruyter, Berlin.

    Google Scholar 

  99. Klibanov, A.M., Tu, T.-M. and Scott, K.P. 1983. Peroxidase-catalyzed removal of phenols from coal-conversion waste waters. Science 221: 259–260.

    Article  CAS  PubMed  Google Scholar 

  100. Gloger, M., Nelboeck, M., Doring, D. and Klose, S. 1982. Immobilized enzymes in analysis: applications and economic aspects. Enz. Eng. 6: 377–386.

    Article  CAS  Google Scholar 

  101. Pederson, H. and Horvath, C. 1981. Open tubular heterogeneous enzyme reactors in continuous-flow analysis. Appl. Biochem. Bioeng. 3: 1–96.

    Article  Google Scholar 

  102. Wingard, L.B. Jr., Katchalski-Katzir, E. and Goldstein, L. 1981. Analytical Applications of Immobilized Enzymes and Cells. In Applied Biochemistry and Bioengineering, Vol. 3. Academic Press, New York.

  103. Guilbault, G.G. 1982. Analytical uses of immobilized enzymes. Enz. Eng. 6: 395–404.

    Article  CAS  Google Scholar 

  104. Suzuki, S. and Karube, I. 1981. Bioelectrochemical sensors based on immobilized enzymes, whole cells, and proteins. Appl. Biochem. Bioeng. 3: 145–174.

    Article  CAS  Google Scholar 

  105. Chen, A.K., Liu, C.C. and Schiller, J.G. 1979. Potentiometric method for substrate analysis using immobilized NAD+-dependent oxidoreductase enzymes. Biotechnol. Bioeng. 21: 1905–1915.

    Article  CAS  PubMed  Google Scholar 

  106. Verduyn, C., Van Dijken, J.P. and Scheffers, W.A. 1983. A simple, sensitive, and accurate alcohol electrode. Biolechnol. Bioeng. 25: 1049–1055.

    Article  CAS  Google Scholar 

  107. Renneberg, R., Pfiffer, D. and Scheller, F. 1982. Enzyme sequence electrodes based on immobilized glucose oxidase, peroxidase, and catalase. Anal. Chim. Acta. 134: 359–364.

    Article  CAS  Google Scholar 

  108. Johnson, J.M., Halsall, H.B. and Heineman, W.R. 1982. Galactose oxidase enzyme electrode with internal solution potential control. Anal. Chem. 54: 1394–1399.

    Article  CAS  Google Scholar 

  109. Johnson, J.M., Halsall, H.B. and Heineman, W.R. 1982. Potential-dependent enzymatic activity in an enzyme thin-layer cell. Anal. Chem. 54: 1377–1383.

    Article  CAS  Google Scholar 

  110. Enfors, S.-V. 1981. Oxygen-stabilized enzyme electrode for D-glucose analysis in fermentation broths. Enz. Microb. Technol. 3: 29–32.

    Article  CAS  Google Scholar 

  111. Tsuchida, T. and Yoda, K. 1982. Immobilization of D-glucose oxidase onto a hydrogen peroxide perrnselective membrane and application for an enzyme electrode. Enz. Microb. Technol. 3: 326–330.

    Article  Google Scholar 

  112. Chotani, G. and Constantinides, A. 1982. On line glucose analyzer for fermentation applications. Biotechnol. Bioeng. 24: 2743–2745.

    Article  CAS  PubMed  Google Scholar 

  113. Kuriyama, S. and Rechitz, G.A. 1981. Plant tissue-based biosclective membrane electrode for glutamate. Anal. Chim. Acta 131: 91–96.

    Article  CAS  Google Scholar 

  114. Chen, A.K., Starzmann, J.A. and Lui, C.C. 1982. Potentiometric quantitation of glyccrol using immobilized glycerol dehydrogenase. Biotechnol. Bioeng. 24: 971–975.

    Article  CAS  PubMed  Google Scholar 

  115. Kovach, P.M. and Meyerhoff, M.E. 1982. Development and application of a histidine-selective biomcmbrane electrode. Anal. Chem 54: 217–220.

    Article  CAS  PubMed  Google Scholar 

  116. Wanatabe, E., Ando, K., Karube, I., Matsuoka, H. and Suzuki, S. 1983. Determination of hypoxanthine in fish meat with an enzyme sensor. J. Food Sci. 48: 496–500.

    Article  Google Scholar 

  117. Lui, C.C. and Chen, A.K. 1982. Potentiometric quantitation of biological substrates using gel-immobilized oxidoreductases. Process Biochem. Sept./Oct.: 12–14.

  118. Tran, N.D., Romette, J.L. and Thomas, D. 1983. An enzyme electrode for specific determination of L-lysine: a real-time control sensor. Biotechnol. Bioeng. 25: 329–340.

    Article  CAS  PubMed  Google Scholar 

  119. Clark, L.C. Jr., and Lyons, C. 1962. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci. 102: 29–45.

    Article  CAS  PubMed  Google Scholar 

  120. Slama, J.T., Oruganti, S.R. and Kaiser, E.T. 1981. Semisynthetic enzymes: synthesis of a new' flavopapain with high catalytic efficiency. J. Am. Chem. Soc. 103: 6211–6213.

    Article  CAS  Google Scholar 

  121. Schwartz, R.D. 1979. Microbial production of hydroxylated biphenyl compounds. U.S. Patent 4,153,509.

  122. Schwartz, R.D., Williams, A.L. and Hutchinson, D.B. 1980. Microbial production of 4,4′-dihydroxybiphenyl:biphenyl hdyroxylation by fungi. Appl. Env. Microbiol. 39: 702–708.

    Article  CAS  Google Scholar 

  123. Schwartz, R.D. and Hutchinson, D.B. 1981. Microbial and enzymatic production of 4,4′-dihydroxybiphenyl via phenol coupling. Enz. Microb. Technol. 3: 361–363.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, S., Padgette, S. Oxidoreductase Enzymes in Biotechnology: Current Status and Future Potential. Nat Biotechnol 1, 677–686 (1983). https://doi.org/10.1038/nbt1083-677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1083-677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing