Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts

Abstract

For introducing regions of human chromosomes greater than a megabase into cells or animals, we have developed a chromosome-cloning system in which defined regions of human chromosomes can be cloned into a stable human minichromosome vector in homologous recombination-proficient chicken DT40 cells. The stable minichromosome vector allowed a 10 Mb-sized region of the mitotically unstable human chromosome 22 to be stably maintained in mouse embryonic stem (ES) cells, and in mice. Furthermore, we demonstrated functional expression of human genes from the HAC in mice. This study describes a stable cloning and expression system for greater than megabase–sized regions of human chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the chromosome-cloning approach.
Figure 2: Cloning of the hCI22 and hCI2 into SC20 vector.
Figure 3: Verification of successful isolation of the cells containing λ-HAC.
Figure 4: Mitotic stability of λ-HAC in mouse ES cells.
Figure 5: The function of λ-HAC in chimeric mice.

Similar content being viewed by others

References

  1. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Sternberg, N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl. Acad. Sci. USA 87, 103–107 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Burke, D.T., Carle, G.F. & Olson, M.V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–813 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Green, E.D., Riethman, H.C., Dutchik, J.E. & Olson, M.V. Detection and characterization of chimeric yeast artificial-chromosome clones. Genomics 11, 658–669 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Harrington, J.J., Bokkelen, G.V., Mays, R.W., Gustashaw, K. & Willard, H.F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15, 345–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Shen, M.H., Yang, J., Loupart, M.-L., Smith, A. & Brown, W. Human mini-chromosomes in mouse embryonal stem cells. Hum. Mol. Genet. 6, 1375–1382 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Ikeno, M. et al. Construction of YAC-based mammalian artificial chromosomes. Nat. Biotechnol. 16, 431–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Mill, W., Cricher, R., Lee, C. & Farr, C. J. Generation of an 4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum. Mol. Genet. 8, 751–761 (1999).

    Article  Google Scholar 

  9. Szeles, T.H. et al. Stability of a functional murine satellite DNA-based artificial chromosome across mammalian species. Chromosome Res. 7, 3–7 (1999).

    Article  PubMed  Google Scholar 

  10. Grimes, B. & Cooke, H. Engineering mammalian chromosomes. Hum. Mol. Genet. 7, 1635–1640 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Kelleher, Z. et al. First-generation mouse artificial episomal chromosomes for shuttling 100 KB human DNA in mouse cells. Nat. Biotechnol. 16, 762–768 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Co, D.O. et al. Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chromosome Res. 8, 183–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Tomizuka, K. et al. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat. Genet. 16, 133–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Tomizuka, K. et al. Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing immunogobulin heavy and kappa loci and expression of fully human antibodies. Proc. Natl. Acad. Sci. USA 97, 722–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Smith, A. J. H. et al. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat. Genet. 9, 376–384 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Kuroiwa, Y. et al. Efficient modification of a human chromosome by telomere-directed truncation in high homologous recombination-proficient chicken DT40 cells. Nucleic Acid Res. 26, 3447–3448 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Dieken, E.S., Epner, E.M., Fiering, S., Fournier, R.E.K. & Groudine, M. Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids. Nat. Genet. 12, 174–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Worton, R.G. et al. Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5′ end. Science 239, 64–68 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Deursen, J.V., Fornerod, M., Rees, B.V. & Grosveld, G. Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc. Natl. Acad. Sci. USA 92, 7376–7380 (1995).

    Article  PubMed  Google Scholar 

  21. Kuppers, J.B, Zocher, I., Thiebe, R. & Zachau, H.G. The human immunoglobulin κ locus on yeast artificial chromosomes (YACs). Gene 191, 173–181 (1997).

    Article  Google Scholar 

  22. Weichhold, G.M., Huber, C., Parnes, J.R. & Zachau, H.G. The CD8α locus is located on the telomere side of the immunoglobulin κ locus at a distance of 2Mb. Genomics 16, 512–514 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Su, H., Wang, X. & Bradley, A. Nested chromosomal deletions induced with retroviral vectors in mice. Nat. Genet. 24, 92–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Loupart, M.L., Shen, M.H. & Smith, A. Differential stability of a human mini-chromosome in mouse cell lines. Chromosome 107, 255–259 (1998).

    Article  CAS  Google Scholar 

  25. Honjo, T. & Alt, F.W. Immunoglobulin genes, Edn. 2. (Academic Press, San Diego, CA; 1995).

    Google Scholar 

  26. Abuin, A., & Bradley, A. Recycling selectable markers in mouse embryonic stem cells. Mol. Cell. Biol. 16, 1851–1856 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yagi, T. et al. Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc. Natl. Acad. Sci. USA 87, 9918–9922 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Mortensen, R.M., Conner, D.A., Chao, S., Geisterfer-Lowrance, A.A. & Seidman, J.G. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shun-ichi Takeda for technical advice and valuable discussion; Saori Suzuki and Sumiko Igami for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Ishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroiwa, Y., Tomizuka, K., Shinohara, T. et al. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol 18, 1086–1090 (2000). https://doi.org/10.1038/80287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing