Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design of GFB-111, a platelet-derived growth factor binding molecule with antiangiogenic and anticancer activity against human tumors in mice

Abstract

We have designed a molecule, GFB-111, that binds to platelet-derived growth factor (PDGF), prevents it from binding to its receptor tyrosine kinase, and blocks PDGF-induced receptor autophosphorylation, activation of Erk1 and Erk2 kinases, and DNA synthesis. GFB-111 is highly potent (IC50 = 250 nM) and selective for PDGF over EGF, IGF-1, aFGF, bFGF, and HRGβ (IC50 values > 100 μM), but inhibits VEGF-induced Flk-1 tyrosine phosphorylation and Erk1/Erk2 activation with an IC50 of 10 μM. GFB-111 treatment of nude mice bearing human tumors resulted in significant inhibition of tumor growth and angiogenesis. The results demonstrate the feasibility of designing novel growth factor–binding molecules with potent anticancer and antiangiogenic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of growth factor binders (GFBs).
Figure 2: GFB-111 binds PDGF and inhibits 125I-PDGF binding to its receptor on NIH 3T3 cells.
Figure 3: GFB-111 inhibits selectively PDGF-stimulated receptor tyrosine autophosphorylation and activation of MAPK.
Figure 4: GFB-111 selectively inhibits PDGF-stimulated DNA synthesis.
Figure 5: GFB-111 inhibits tumor growth and angiogenesis in nude mice.

Similar content being viewed by others

References

  1. Heldin, C.H., Ostman, A. & Ronnstrand, L. Signal transduction via platelet-derived growth factor receptors. Biochim. Biophys. Acta 1378, F79–F113 (1998).

    CAS  PubMed  Google Scholar 

  2. Heldin, C.H. & Westermark, B. In The molecular and cellular biology of wound repair. Edn. 2 (Plenum Press, New York; 1996).

    Google Scholar 

  3. Raines, E.W., Bowen-Pope, D.F. & Ross, R. Platelet-derived growth factor. In Handbook of experimental pharmacology. Peptide growth factors and their receptors. (Springer, Heidelberg; 1990).

    Google Scholar 

  4. Forsberg, K., Valyi-Nagy, I., Heldin, C.H., Herlyn, M. & Westermark, B. Platelet-derived growth factor (PDGF) in oncogenesis: development of vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB. Proc. Natl. Acad. Sci. USA 90, 393–397 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Battegay, E.J., Rupp, J., Iruela-Arispe, L., Sage, E.H. & Pech, M. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J. Cell. Biol. 125, 917–928 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Thommen, R. et al. PDGF-BB increases endothelial migration on cord movements during angiogenesis in vitro. J. Cell. Biochem. 64, 403–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, R., Yoneda, J., Bucana, C.D. & Fidler, I.J. Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int. J. Oncol. 12, 749–757 (1998).

    CAS  PubMed  Google Scholar 

  8. Wang, D., Huang, H.J., Kazlauskas, A. & Cavenee, W.K. Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res. 59, 1464–1472 (1999).

    CAS  PubMed  Google Scholar 

  9. Leveen, P. et al. Mice deficient for PDGF-B show renal, cardiovascular and hematological abnormalities. Genes Dev. 8, 1875–1887 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Soriano, P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 8, 1888–1896 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Kazlauskas, A. & Cooper, J.A. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58, 1121–1133 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Lowenstein, E.J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70, 431–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Ramakrishnan, V. et al. A novel monoclonal antibody dependent on domain 5 of the platelet-derived growth factor beta receptor inhibits ligand binding and receptor activation. Growth Factors 8, 253–265 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Engstrom, U., Engstrom, A., Ernlund, A., Westermark, B. & Heldin, C.H. Identification of a peptide antagonist for platelet-derived growth factor. J. Biol. Chem. 267, 16581–16587 (1992).

    CAS  PubMed  Google Scholar 

  15. Brennand, D.M. et al. Identification of a cyclic peptide inhibitor of platelet-derived growth factor-BB receptor-binding and mitogen-induced DNA synthesis in human fibroblasts. FEBS Lett. 413, 70–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Shulman, T., Sauer, F.G., Jackman, R.M., Chang, C.N. & Landolfi, N.F. An antibody reactive with domain 4 of the platelet-derived growth factor β receptor allows BB binding while inhibiting proliferation by impairing receptor dimerization. J. Biol. Chem. 272, 17400–17404 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Klohs, W.D., Fry, D.W. & Kraker, A.J. Inhibitors of tyrosine kinase. Curr. Opin. Oncol. 9, 562–568 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Ferns, G.A. et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 253, 1129–1132 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Duan, D.S., Pazin, M.J., Fretto, L.J. & Williams, L.T. A functional soluble extracellular region of the platelet-derived growth factor (PDGF) β receptor antagonizes PDGF-stimulated responses. J. Biol. Chem. 266, 413–418 (1991).

    CAS  PubMed  Google Scholar 

  21. Green, L.S. et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35, 14413–14424 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Park, H.D., Lin, Q. & Hamilton, A.D. Protein surface recognition by synthetic receptors: a route to novel sub-micromolar inhibitors for chymotrypsin. J. Am. Chem. Soc. 121, 8–13 (1999).

    Article  CAS  Google Scholar 

  23. Hamuro, Y., Calama, M.C., Park, H.S. & Hamilton, A.D. A calixarene with four peptide loops: an antibody mimic for recognition of protein surfaces. Angew. Chem. Int. Edn. Engl. 36, 2680–2683 (1997).

    Article  CAS  Google Scholar 

  24. Oefner, C., Arey, A.D., Winkler, F.K., Eggimann, B. & Hosang, M. Crystal structure of human platelet derived growth factor, EMBO J. 11, 3921–3926 (1996).

    Article  Google Scholar 

  25. Anderson, M. et al. Involvement of loop 2 of platelet derived growth factor-AA and -BB in receptor binding. Growth Factors 12, 159–164 (1995).

    Article  Google Scholar 

  26. Muller, Y.A. et al. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. USA 94, 7192–7197, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Campion, S.R. & Niyogi, S.K. Interaction of the epidermal growth factor with its receptor. Prog. Nucleic Acid Res. Mol. Biol. 49, 353–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Stauber, D.J., DiGabriele, A.D. & Hendrickson, W.A. Structural interactions of fibroblast growth factor receptor with its ligands. Proc. Natl. Acad. Sci. USA 97, 49–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. McInnes, C. & Sykes, B.D. Growth factor receptors: structure, mechanism and drug discovery. Biopolymers 43, 339–366 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Jones, J.T. et al. Binding interaction of the heregulinβ egf domain with ErbB3 and ErbB4 receptors assessed by alanine scanning mutagenesis. J. Biol. Chem. 273, 11667–11674 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. McGuire, T., Qian, Y., Hamilton, A.D. & Sebti, S.M. Platelet derived growth factor receptor tyrosine phosphorylation requires protein geranylgeranylation and not farnesylation. J. Biol. Chem. 271, 27402–27407 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Sun, J. et al. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, taxol and gemcitabine. Cancer Res. 59, 4919–4926 (1999).

    CAS  PubMed  Google Scholar 

  33. Weidner, N., Semple, J.P., Welch, W.R. & Folkman, J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH PO1 CA78038-01A1 and United States Army grant DAMD17-99-1-9458. We would also like to thank Dr. Axel Ullrich (Max-Planck-Institute for Biochemistry) and Dr. Richard Jove (Moffitt Cancer Center and USF) for NIH3T3 cells overexpressing the VEGF/flk-1 receptor and EGFR, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew D. Hamilton or Saïd M. Sebti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaskovich, M., Lin, Q., Delarue, F. et al. Design of GFB-111, a platelet-derived growth factor binding molecule with antiangiogenic and anticancer activity against human tumors in mice. Nat Biotechnol 18, 1065–1070 (2000). https://doi.org/10.1038/80257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing