Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New Developments in Gene Cloning in Antibiotic Producing Microorganisms

Abstract

Commercially important antibiotics are produced by several classes of organisms including many of the actinomycetes (Streptomyces, Actinomadura, Actinoplanes, Micromonospora, and Nocardia species), bacilli and fungi (Cephalosporium and Penicillium species). Antibiotics can be purified from microbial fermentations and modified chemically or enzymatically for either commercial use or fundamental studies. Gene cloning technology is less developed for antibiotic producers than it is for widely studied organisms such as Escherichia coli, bacilli and yeasts. Recently, however, there have been examples of gene cloning that could lead to useful new compounds or improvement in yields of existing compounds. In this review I highlight recent developments in gene cloning technology in antibiotic producing microorganisms and place these developments in perspective with studies of the past and prospects for the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fayerman, J.T., Jones, M.D., and Richardson, M.A. 1985. Development of systems for heterologous gene expression in Streptomyces spp., p. 414–420. In: Microbiology—1985. L. Lieve (ed.), American Society for Microbiology, Washington.

    Google Scholar 

  2. Queener, S.W., Ingolia, T.D., Skatrud, P.L., Chapman, J.L., and Kaster, K.R. 1985. A system for genetic transformation of Cephalosporium acremonium, p. 468–472. In: Microbiology—1985. L. Lieve (ed.), American Society for Microbiology, Washington.

    Google Scholar 

  3. Hopwood, D.A. 1978. Extrachromosomally determined antibiotic production. Ann. Rev. Microbiol. 32:373–392.

    Article  CAS  Google Scholar 

  4. Hopwood, D.A. and Chater, K.F. 1980. Fresh approaches to antibiotic production. Phil. Trans. R. Soc. Lond. B290:313–328.

    Article  Google Scholar 

  5. Chater, K.F., Hopwood, D.A., Kieser, T., and Thompson, C.J. 1981. Gene cloning in Streptomyces. Curr. Top. Microbiol. & Immunol. 96:69–95.

    Google Scholar 

  6. Hopwood, D.A., Bibb, M.J., Bruton, C.J., Chater, K.F., Feitelson, J.S., and Gil, J.A. 1983. Cloning Streptomyces genes for antibiotic production. Trends in Biotechnol. 1:42–48.

    Article  CAS  Google Scholar 

  7. Chater, K., Bibb, M., Bruton, C., Hopwood, D., Janssen, G., Malpartida, F., and Smith, C. 1984. Dissecting the Streptomyces genome. Biochem. Soc. Trns. 12:584–586.

    Article  CAS  Google Scholar 

  8. Gil, J.A. and Martin, J.F. 1984. Cloning and expression of antibiotic production genes. Bio/Technology 2:63–72.

    Google Scholar 

  9. Lomovskaya, N.D., Chater, K.F., and Mkrtumian, N.M. 1980. Genetics and molecular biology of Streptomyces phages. Microbiol. Rev. 44:206–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M., and Schrempf, H. 1985. Genetic manipulations of Streptomyces: A laboratory manual. John Innes Foundation, Norwich.

    Google Scholar 

  11. Baltz, R.H. and Matsushima, P. 1981. Protoplast fusion in Streptomyces: Conditions for efficient genetic recombination and cell regeneration. J. Gen. Microbiol. 127:137–146.

    CAS  PubMed  Google Scholar 

  12. Hopwood, D.A. and Wright, H.M. 1981. Protoplast fusion in Streptomyces: Fusions involving ultraviolet-irradiated protoplasts. J. Gen. Microbiol. 126:21–27.

    Google Scholar 

  13. Matsushima, P. and Baltz, R.H. 1985. Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. J. Bacteriol. 163:180–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hershberger, C.L. 1982. Recombinant DNA systems for application to antibiotic fermentation in Streptomyces. Ann. Rep. Ferment. Proc. 5:101–126.

    Article  CAS  Google Scholar 

  15. Hopwood, D.A., Bibb, M.J., Ward, J.M., and Westpheling, J. 1979. Plasmids in Streptomyces coelicolor and related species, p. 245–258. In: Plasmids of medical, environmental and commercial importance. K. N. Timmis and K. Puhler (eds.), Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  16. Jones, M.D., Mabe, J.A., Nakatsukasa, W.M., and Fayerman, J.T. 1984. pFJ265, a new cloning vehicle for Streptomyces. Plasmid 11:92–95.

    Article  CAS  PubMed  Google Scholar 

  17. Jones, M.D. and Fayerman, J.T. 1984. pFJ269, a new plasmid isolated from a β-lactam antibiotic producing streptomycete. J. Antibiotics 37:1727–1728.

    Article  CAS  Google Scholar 

  18. Katz, E., Thompson, C.J., and Hopwood, D.A. 1983. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J. Gen. Microbiol. 129:2703–2714.

    CAS  PubMed  Google Scholar 

  19. Kieser, T., Hopwood, D.A., Wright, H.M., and Thompson, C.J. 1982. pIJ101, a multi-copy broad host range Streptomyces plasmid: Functional analysis and development of DNA cloning vectors. Mol. Gen. Genet. 185:223–238.

    Article  CAS  PubMed  Google Scholar 

  20. Richardson, M.A., Mabe, J.A., Beerman, N.E., Nakatsukasa, W.M., and Fayerman, J.T. 1982. Development of cloning vehicles from the Streptomyces plasmid pFJ103. Gene 20:451–457.

    Article  CAS  PubMed  Google Scholar 

  21. Birch, A.W. and Cullum, J. 1985. Temperature sensitive mutants of the Streptomyces plasmid pIJ702. J. Gen. Microbiol. 131:1299–1303.

    CAS  PubMed  Google Scholar 

  22. Lydiate, D.J., Malpartida, F., and Hopwood, D.A. 1985. The Streptomyces plasmid SCP2*: Its functional analysis and development into a useful cloning vectors. Gene 35:223–235.

    Article  CAS  PubMed  Google Scholar 

  23. Rao, R.N., Richardson, M.A., and Kuhstoss, S. 1986. Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods in Enzymology (in press).

    Google Scholar 

  24. Kieser, T. 1984. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 12:19–36.

    Article  CAS  PubMed  Google Scholar 

  25. Hopwood, D.A., Bibb, M.J., Chater, K.F., and Kieser, T. 1986. Plasmid and phage vectors for gene cloning and analysis in Streptomyces. Methods in Enzymology (in press).

    Google Scholar 

  26. Chater, K.F., Bruton, C.J., and Suarez, J.E. 1981. Restriction mapping of the DNA of the Streptomyces temperature phage ΦC31 and its derivatives. Gene 14:183–194.

    Article  CAS  PubMed  Google Scholar 

  27. Chater, K.F. and Bruton, C.J. 1983. Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene 26:67–78.

    Article  CAS  PubMed  Google Scholar 

  28. Rodicio, M.R., Bruton, C.J., and Chater, K.F. 1985. New derivatives of the Streptomyces temperate phage ΦC31 useful for cloning and functional analysis of Streptomyces DNA. Gene 34:283–292.

    Article  CAS  PubMed  Google Scholar 

  29. Thompson, C.J., Ward, J.M., and Hopwood, D.A. 1980. DNA cloning in Streptomyces: Resistance genes from antibiotic producing species. Nature 286:525–527.

    Article  CAS  PubMed  Google Scholar 

  30. Thompson, C.J., Ward, J.M., and Hopwood, D.A. 1982. Cloning of antibiotic resistance and nutritional genes in streptomycetes. J. Bacteriol. 151:668–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Foor, F., Roberts, G.P., Morin, N., Snyder, L., Hwang, M., Gibbons, P.H., Paradiso, M.J., Stotish, R.L., Ruby, C.L., Wolanski, B., and Streicher, S.L. 1985. Isolation and characterization of the Streptomyces cattleya temperate phage TG1. Gene 39:11–16.

    Article  CAS  PubMed  Google Scholar 

  32. Ogata, S., Suenaga, H., and Hayashida, S. 1985. A temperate phage of Streptomyces azureus. Appl. and Env. Microbiol. 49:201–204.

    CAS  Google Scholar 

  33. Anné, J., Verheyen, P., Volckaert, G., and Eyssen, H. 1985. A restriction endonuclease map of the Streptomyces phage VWB. Mol. Gen. Genet. 200:506–507.

    Article  PubMed  Google Scholar 

  34. Chung, S.-T. 1982. Isolation and characterization of Streptomyces fradiae plasmids which are prophage of the actinophage ΦSF1. Gene 17:239–246.

    Article  CAS  PubMed  Google Scholar 

  35. Stanzak, R., Matsushima, P., Baltz, R.H., and Rao, R.N. 1985. Cloning and expression in Streptomyces lividans of clustered erythromycin biosynthesis genes from Streptomyces erythreus. Bio/Technology. 4:229–232.

    Google Scholar 

  36. Richardson, M.A., Kuhstoss, S., Solenberg, P., Schaus, N.A., and Rao, R.N. 1986. Characterization of a new shuttle cosmid vector, pKC505, for cloning of Streptomyces ambofaciens chromosome and the identification of two spiramycin resistance genes, p. 26. In: Abs. First Ann. ASM Conf. Biotechnol. Amer. Soc. Microbiol., Washington.

  37. Bibb, M.J., Bibb, M.J., Ward, J.M., and Cohen, S.N. 1985. Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces. Mol. Gen. Genet. 199:26–36.

    Article  CAS  PubMed  Google Scholar 

  38. Bibb, M.J. and Cohen, S.N. 1982. Gene expression in Streptomyces: Construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol. Gen. Genet. 187:265–277.

    Article  CAS  PubMed  Google Scholar 

  39. Juarin, B. and Cohen, S.N. 1985. Streptomyces contain Escherichia coli-type A + T rich promoters having novel structural features. Gene 39:191–201.

    Article  Google Scholar 

  40. Bibb, M.J., Janssen, G.R., and Ward, J.M. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215–226.

    Article  CAS  PubMed  Google Scholar 

  41. Zalacain, M., González, A., Guerrero, M.C., Mattaliano, R.J., Malpartida, F., and Jiménez, A. 1986. Nucleotide sequence of the hygromycin B phosphotransferase gene from Streptomyces hygroscopicus. Nucl. Acids Res. (in press).

  42. Juarin, B. and Cohen, S.N. 1984. Streptomyces lividans RNA polymerase recognizes and uses Escherichia coli transcriptional signals. Gene 28:83–91.

    Article  Google Scholar 

  43. Westpheling, J., Ranes, M., and Losick, R. 1985. RNA polymerase heterogeneity in Streptomyces coelicolor. Nature 313:22–27.

    Article  CAS  PubMed  Google Scholar 

  44. Thompson, J., Rae, S., and Cundliffe, E. 1984. Coupled transcription-translation in extracts of Streptomyces lividans. Mol. Gen. Genet. 195:39–43.

    Article  CAS  PubMed  Google Scholar 

  45. Brawner, M.E., Auerbach, J.I., Fornwald, J.A., Rosenberg, M., and Taylor, D.P. 1985. Characterization of Streptomyces promoter sequences using the Escherichia coli galactokinase gene. Gene 40:191–201.

    Article  CAS  PubMed  Google Scholar 

  46. Deng, Z.X., Kieser, T., and Hopwood, D.A. 1986. Expression of a Streptomyces plasmid promoter in Escherichia coli. Gene (in press)

  47. Ward, J.M., Janssen, G.R., Kieser, T., Bibb, M.J., Buttner, M.J., and Bibb, M.J. 1986 Construction and characterization of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol. Gen. Genet. (in press)

  48. Beck, E., Ludwig, G., Auerswald, E.A., Reiss, B., and Schaller, H. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336.

    Article  CAS  PubMed  Google Scholar 

  49. Baltz, R.H., Fayerman, J.T., Ingolia, T.D., and Rao, R.N. 1986. Production of novel antibiotics by gene cloning and protein engineering, p. 365–381. In: Protein engineering. M. Inouye and R. Sarma (eds.), Academic Press, New York.

    Google Scholar 

  50. Hopwood, D.A., Malpartida, F., and Chater, K.F. 1985. Gene cloning to analyze the organization and expression of antibiotic biosynthesis genes in Streptomyces, p. 23–33. In: Regulation of secondary metabolite formation. H. Kleinkauf, H. v. Döhren, H. Domauer, and G. Nesemann (eds.), VCH Verlagsgesellschaft mbH, Weinheim.

    Google Scholar 

  51. Hopwood, D.A. 1986. Cloning and analysis of antibiotic biosynthetic genes in Streptomyces. In: Proc. Int. Symp. Biol. Actinomycetes (in press)

  52. Feitelson, J.S. and Hopwood, D.A. 1983. Cloning of a Streptomyces gene for an O-methyltransferase involved in antibiotic biosynthesis. Mol. Gen. Genet. 190:394–398.

    Article  CAS  PubMed  Google Scholar 

  53. Malpartida, F. and Hopwood, D.A. 1985. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 309:462–464.

    Article  Google Scholar 

  54. Gil, J.A. and Hopwood, D.A. 1983. Cloning and expression of a p-aminobenzoic acid synthetase gene of the candicidin-producing Streptomyces griseus. Gene 25:119–132.

    Article  CAS  PubMed  Google Scholar 

  55. Rhodes, P.M., Hunter, I.S., Friend, E.J., and Warren, M. 1984. Recombinant DNA methods for the oxytetracycline producer Streptomyces rimosus. Biochem. Soc. Trans. 12:586–587.

    Article  CAS  PubMed  Google Scholar 

  56. Jones, G.H. and Hopwood, D.A. 1984. Molecular cloning and expression of the phenoxazinone synthase gene from Streptomyces antibioticus. J. Biol. Chem. 259:14151–14157.

    CAS  PubMed  Google Scholar 

  57. Jones, G.H. and Hopwood, D.A. 1984. Activation of phenoxazinone synthase expression in Streptomyces lividans by cloned DNA sequences from Streptomyces antibioticus. J. Biol. Chem. 259:14158–14164.

    CAS  PubMed  Google Scholar 

  58. Jones, G.H. 1985. Regulation of phenoxazinone synthase expression in Streptomyces antibioticus. J. Bacteriol. 163:1215–1221.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bailey, C.R., Butler, M.J., Normansell, R.T., Rowlands, R.T., and Winstanley, D.J. 1984. Cloning of a Streptomyces clavuligerus genetic locus involved in clavulanic acid biosynthesis. Bio/Technology 2:808–811.

    CAS  Google Scholar 

  60. Hopwood, D.A., Malpartida, F., Kieser, H.M., Ikeda, H., Duncan, J., Fujii, I., Rudd, B.A.M., Floss, H.G., and Omura, S. 1985. Production of ‘hybrid’ antibiotics by genetic engineering. Nature 312:642–644.

    Article  Google Scholar 

  61. Seno, E.T. and Hershberger, C.L. 1986. (personal communication)

  62. Thompson, C.J., Kieser, T., Ward, J.M., and Hopwood, D.A. 1982. Physical analysis of antibiotic resistance genes from Streptomyces and their use in vector construction. Gene 20:51–62.

    Article  CAS  PubMed  Google Scholar 

  63. Seno, E.T. and Hutchinson, C.R. 1986. The biosynthesis of tylosin and erythromycin: Model systems for studies of the genetics and biochemistry of antibiotic formation, p. 231–279. In: Antibiotic producing Streptomyces, volume IX, The Bacteria; a treatise of structure and function. L. E. Day and S. W. Queener (eds.), Academic Press, New York.

    Google Scholar 

  64. Samson, S.M., Belagaje, R., Blankenship, D.T., Chapman, J.L., Perry, D., Skatrud, P.L., Van Frank, R.M., Abraham, E.P., Baldwin, J.E., Queener, S.W., and Ingolia, T.D. 1985. Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318:191–194.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayerman, J. New Developments in Gene Cloning in Antibiotic Producing Microorganisms. Nat Biotechnol 4, 786–789 (1986). https://doi.org/10.1038/nbt0986-786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0986-786

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing