Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Epstein-Barr–based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells

Abstract

We describe the microcell fusion transfer of 100–200 kb self-replicating circular human minichromosomes from human into mouse cells. This experimental approach is illustrated through the shuttling of the latent 170 kb double-stranded DNA genome from the human herpesvirus, Epstein-Barr virus, into nonpermissive rodent cells. Using this interspecies transfer strategy, circular episomes carrying 95–105 kb of human DNA were successfully established at low copy number in mouse A9 cells. Selected episomes were stably maintained for 6 months, and unselected episomes were characterized by a 95% episomal retention per cell division. The establishment of a mouse artificial episomal chromosome system should facilitate evolutionary and therapeutic studies of large human DNA in rodent genetic backgrounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yates, J.L., Warren, N., and Sugden, B. 1985. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313: 812–815.

    Article  CAS  PubMed  Google Scholar 

  2. Rawlins, D.R., Milman, G., Hayward, S.D., and Hayward, G.S. 1985. Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42: 859–868.

    Article  CAS  PubMed  Google Scholar 

  3. Gahn, T.A. and Schildkraut, C.L. 1989. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell 58: 527–535.

    Article  CAS  PubMed  Google Scholar 

  4. Yates, J.L. 1996. Epstein-Barr virus DNA replication, pp. 751–773 in DNA replication in eukaryotic cells. Depamphilis, M. (ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  5. Sun, T.-Q., Fenstermacher, D. and Vos, J.-M.H. 1994. Human artificial episomal chromosomes for cloning large DNA in human cells. Nat. Genet. 8:33–41.

    Article  CAS  PubMed  Google Scholar 

  6. Simpson, K., McGuigan, A. and Huxley, C. 1996. Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol. Cell. Biol. 16: 5117–5126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun, T.-Q., Livanos, E., and Vos, J.-M.H. 1996. Engineering a mini-herpesvirus as a general strategy to transduce up to 180 kb of functional self-replicating human mini-chromosomes. Gene Ther. 3:1081–1088.

    CAS  PubMed  Google Scholar 

  8. Sun, T.-Q. and Vos, J.-M.H. 1996. Engineering of 100–300 kb of DNA as persisting extrachromosomal elements in human cells using the HAEC system, pp. 167–188 in Methods in molecular genetics. Adolph, K. (ed.), Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  9. Kieff, E. 1996. Epstein-Barr virus and its replication, pp. 2343–2396 in Fields virology. Fields, B., Knipe, D, and Howley, P. (eds.), Lippincott-Raven Publishers, Philadelphia, PA.

    Google Scholar 

  10. Featherstone, T. and Huxley, C. 1993. Extrachromosomal maintenance and amplification of yeast artificial chromosome DNA in mouse cells. Genomics 17: 267–278.

    Article  CAS  PubMed  Google Scholar 

  11. Nonet, G.H. and Wahl, G.M. 1993. Introduction of YACs containing a putative mammalian replication origin into mammalian cells can generate structures that replicate autonomously. Somat. Cell Mol. Genet. 19: 171–192.

    Article  CAS  PubMed  Google Scholar 

  12. Taylor, S.S., Larin, Z., and Tyler-Smith, C. 1996. Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequences in mouse cells. Chromosoma 105: 70–81.

    Article  CAS  PubMed  Google Scholar 

  13. Krysan, P.J. and Calos, M.P. 1993. Epstein-Barr virus-based vectors that replicate in rodent cells. Gene 136: 137–143.

    Article  CAS  PubMed  Google Scholar 

  14. Wohlgemuth, J.G., Kang, S.H., Bulboaca, G.H., Nawotka, K.A., and Calos, M.P. 1996. Long-term gene expression from autonomously replicating vectors in mammalian cells. Gene Ther. 3:503–512.

    CAS  PubMed  Google Scholar 

  15. Edenberg, H.J. and Huberman, J.A. 1975. Eukaryotic chromosome replication. Annu. Rev. Genet. 9: 245–284.

    Article  CAS  PubMed  Google Scholar 

  16. Krysan, P.J., Smith, J.G., and Calos, M.P. 1993. Autonomous replication in human cells of multimers of specific human and bacterial DNA sequence. Mol. Cell. Biol. 13: 2688–2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vos, J.-M.H. 1997. The simplicity of complex MACs. Nat. Biotechnol. 15: 1257–1259.

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto, K., Mizuno, F., Matsuo, A., Nonoyama, M., and Osato, T. 1978. Epstein-Barr and human chromosomes: close association of the resident viral genome and the expression of the virus-determined nuclear antigen (EBNA) with the presence of chromosome 14 in human-mouse hybrids. Proc. Natl. Acad. Sci. USA 75: 5155–5159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Glaser, R., Nonoyama, M., Hampar, B., and Croce, C.M. 1978. Studies on the association of the Epstein-Barr virus genome and human chromosomes. J. Cell. Physiol. 96: 319–326.

    Article  CAS  PubMed  Google Scholar 

  20. Steplewski, Z., Koprowski, H., Andersson-Anvret, M. and Klein, G. 1978. Epstein-Barr virus in somatic cell hybrids between mouse cells and human nasopharyngeal carcinoma cells. J. Cell Physiol. 97: 1–8.

    Article  CAS  PubMed  Google Scholar 

  21. Banerjee, S., Livanos, L., and Vos, J.-M.H. 1995. Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming Epstein-Barr virus. Nat. Med. 1: 1303–1308.

    Article  CAS  PubMed  Google Scholar 

  22. Westphal, E.M., Sierakowska, H., Livanos, E., Kole, R., and Vos, J.-M. 1998. A system for shuttling 200 kb BAC/PAC clones into human cells: stable extrachromosomal persistence and long-term ectopic gene activation. Hum. Gene Ther. In press.

  23. Burke, D.T., Carle, G.F., and Olson, M.V. 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–812.

    Article  CAS  PubMed  Google Scholar 

  24. Middleton, T. and Sugden, B. 1994. Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA-1. J. Virol. 68: 4067–4071.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jankelevich, S., Kolman, J.L., Bodner, J.W., and Miller, G. 1992. A nuclear matrix attachment region organizes the Epstein-Barr viral plasmid in Raji cells into a single DNA domain. EMBO J. 11: 1165–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wendelburg, B.J. and Vos, J.-M.H. 1998. An enhanced EBNA-1 variant with partial gly-ala domains for long-term episomal maintenance and transgene espression. Gene Ther. In press.

  27. Vos, J.-M.H. 1998. Mammalian artificial chromosomes as tools for gene. Curr. Opin. Genet. Dev. 8: In press.

  28. Shimizu, N., Kanda, T., and Wahl, G.M. 1996. Selective capture of acentric fragments by micronuclei provides a rapid method for purifying extrachromosomally amplified DNA. Nat. Genet. 12: 65–71.

    Article  CAS  PubMed  Google Scholar 

  29. Kosztolanyi, G., Mehes, K., and Hook, E.B. 1991. Inherited ring chromosomes: an analysis of published cases. Hum. Genet. 87: 320–324.

    Article  CAS  PubMed  Google Scholar 

  30. Tomizuka, K., Yoshida, H., Uejima, H., Kugoh, H., Sato, K., Ohguma, A. et al. 1997. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat. Genet. 16: 133–143.

    Article  CAS  PubMed  Google Scholar 

  31. Potten, C.S. and Morris, R.J. 1988. Epithelial stem cells in vivo. J. Cell Sci. Suppl. 10: 45–62.

    Article  CAS  PubMed  Google Scholar 

  32. Licht, T., Herrmann, F., Gottesman, M.M. and Pastan, I. 1997. In vivo drug-selectable genes: a new concept in gene therapy. Stem Cells 15: 104–111.

    Article  CAS  PubMed  Google Scholar 

  33. Kirby, S.L., Cook, D.N., Walton, W., and Smithies, O. 1996. Proliferation of multi-potent hematopoietic cells controlled by a truncated erythropoietin receptor transgene. Proc. Natl. Acad. Sci. USA 93: 9402–9407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanford, J.A. and Stubblefield, E. 1987. General protocol for microcell mediated chromosome transfer. Somat. Cell. Mol. Genet. 13: 279–284.

    Article  CAS  PubMed  Google Scholar 

  35. Lawce, H.J. and Brown, M.G. 1991. Harvesting, slide-making, and chromosome elongation techniques, pp. 31–65 in The ACT cytogenetics laboratory manual. Barch, M.J. (ed.), Raven Press, Ltd., New York.

    Google Scholar 

  36. Chomcznski, P. and Sacchi, N. 1987. Single step method of RNA isolation by acid guanidinium-thiocynate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Vos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelleher, Z., Fu, H., Livanos, E. et al. Epstein-Barr–based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells. Nat Biotechnol 16, 762–768 (1998). https://doi.org/10.1038/nbt0898-762

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0898-762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing