Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Transgenesis by adenovirus-mediated gene transfer into mouse zona-free eggs

Abstract

Zona-free mouse eggs at the pronucleus stage were infected with a replication-defective adenovirus vector containing a nuclear-targeted lacZ gene. Exogenous ß-galactosidase activity was detected in almost all eggs at the two-cell stage. Of 27 mice that developed from infected eggs, three carried the integrated exogenous gene mediated by the adenovirus. Two of the three expressed the lacZ gene, and all three mice transmitted the adenovirus-mediated transgene to F1 progeny Southern blot analysis was consistent with single copy integration. This finding should accelerate the development of new strategies for transgenesis and assist studies on the function of cloned genes in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gordon, J.W. and Ruddle, F.H. 1981. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214: 1244–1246.

    Article  CAS  Google Scholar 

  2. Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A., and Ruddle, F.H. 1980. Genetic transformation of mouse embryos by microinjection of purified DMA. Proc. Natl. Acad. Sci. USA 77: 7380–7384.

    Article  CAS  Google Scholar 

  3. Pinkert, C.A. 1994. Transgenic animal technology, a laboratory handbook. Academic Press, Inc., San Diego.

    Google Scholar 

  4. Gordon, J.W. 1989. Transgenic animals. Int. Rev. of Cytology 115: 171–229.

    Article  CAS  Google Scholar 

  5. Jähner, D., Haase, K., Mulligan, R., and Jaenisch, R. 1985. Insertion of the bacterial gpt gene into the germ line of mice by retroviral infection. Proc. Natl. Acad. Sci. USA 82: 6927–6931.

    Article  Google Scholar 

  6. Jaenisch, R., Jahner, D., Nobis, P., Simon, I., Lohler, J., Harbers, K., et al. 1981. Chromosomal position and activation of retroviral genomes inserted into the germ line of mice. Cell 24: 519–529.

    Article  CAS  Google Scholar 

  7. Rosenfeld, M.A., Yoshimura, K., Trapnell, B.C., Yoneyama, K., Rosenthal, E.R., Dalemans, W., et al. 1992. In vivo transfer of the human cystic fibrosis transmem-brane conductance regulator gene to the airway epithelium. Cell 68: 143–155.

    Article  CAS  Google Scholar 

  8. Quantin, B., Perricaudet, L.D., Tajbakhsh, S., and Mandel, J.L. 1992. Adenovirus as an expression vector in muscle cells in vivo. Proc. Natl. Acad. Sci. USA 89: 2581–2584.

    Article  CAS  Google Scholar 

  9. Le Gal La Salle, G., Robert, J.J., Berrard, S., Ridoux, V., Stratford-Perricaudet, L.D., Perricaudet, M., and Mallet, J. 1993. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259: 988–990.

    Article  CAS  Google Scholar 

  10. Ragot, T., Vincent, N., Chafey, P., Vigne, E., Gilgenkrantz, H., Couton, D., et al. 1993. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361: 647–650.

    Article  CAS  Google Scholar 

  11. Chen, S.H., Chen, X.H., Wang, Y., Kosai, K., Finegold, M.J., Rich, S.S., et al. 1995. Combination gene therapy for liver metastasis of colon carcinoma in vivo. Proc. Natl. Acad. Sci. USA 92: 2577–2581.

    Article  CAS  Google Scholar 

  12. Sabate, O., Horellou, P., Vigne, E., Colin, P., Perricaudet, M., Buc, C.M., et al. 1995. Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nature Genet. 9: 256–260.

    Article  CAS  Google Scholar 

  13. Ginsberg, H.S. 1984. The adenoviruses. Plenum Press, New York.

    Book  Google Scholar 

  14. Horwitz, M.S. 1990. pp. 1679–1742 in Virology, 1. Raven Press, New York.

    Google Scholar 

  15. Zabner, J., Petersen, D.M., Puga, A.R., Graham, S.M., Couture, L.A., Keyes, L.D., et al. 1994. Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats. Nature Genet. 6: 75–83.

    Article  CAS  Google Scholar 

  16. Crystal, R.G., McElvaney, N.G., Rosenfeld, M.A., Chu, C.S., Mastrangeli, A., Hay, J.G., et al. 1994. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nature Genet. 8: 42–51.

    Article  CAS  Google Scholar 

  17. Tsukui, T., Miyake, S., Azuma, S., Ichise, H., Saito, I., and Toyoda, Y. 1995. Gene transfer and expression in mouse preimplantation embryos by recombinant adenovirus vector. Mol. Reprod. Dev. 42: 291–297.

    Article  CAS  Google Scholar 

  18. Kanegae, Y., Lee, G., Sato, Y., Tanaka, M., Nakai, M., Sakaki, T., et al. 1995. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic. Acids. Res. 23: 3816–3821.

    Article  CAS  Google Scholar 

  19. Niwa, H., Yamamura, K., and Miyazaki, J. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199.

    Article  CAS  Google Scholar 

  20. Araki, K., Araki, M., Miyazaki, J., and Vassalli, P. 1995. Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc. Natl. Acad. Sci. USA 92: 160–164.

    Article  CAS  Google Scholar 

  21. Beddington, R.S., Morgernstern, J., Land, H., and Hogan, A. 1989. An in situ transgenic enzyme marker for the midgestation mouse embryo and the visualization of inner cell mass clones during early organogenesis. Development 106: 37–46.

    CAS  Google Scholar 

  22. Palmiter, R.D. and Brinster, R.L. 1986. Germ-line transformation of mice. Annu. Rev. Genet. 465–499.

    Article  CAS  Google Scholar 

  23. Bishop, J.O. and Smith, P. 1989. Mechanism of chromosomal integration of microinjected DNA. Mol. Biol. Med. 6: 283–298.

    CAS  PubMed  Google Scholar 

  24. Rubenstein, J.L., Nicolas, J.F., and Jacob, F. 1986. Introduction of genes into preimplantation mouse embryos by use of a defective recombinant retrovirus. Proc. Natl. Acad. Sci. USA 83: 366–368.

    Article  CAS  Google Scholar 

  25. Visser, L., Wassenaar, A.T., van, M.M., and Rozijn, T.H. 1981. Arrangement of integrated viral DNA sequences in cells transformed by adenovirus types 2 and 5. J. Virol. 39: 684–693.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dorsch, H.K., Fisher, P.B., Weinstein, I.B., and Ginsberg, H.S. 1980. Patterns of viral DNA integration in cells transformed by wild type or DNA-binding protein mutants of adenovirus type 5 and effect of chemical carcinogens on integration. J. Virol. 34: 305–314.

    Google Scholar 

  27. Hoshi, M. and Toyoda, Y. 1985. Effect of EDTA on the preimplantation development of mouse embryos fertilized in vitro. Jpn. J. Zootech. Sci. 56: 931–937.

    CAS  Google Scholar 

  28. Alien, N.D., Cran, D.G., Barton, S.C., Hettle, S., Reik, W., and Surani, M.A. 1988. Transgenes as probes for active chromosomal domains in mouse development. Nature 333: 852–855.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukui, T., Kanegae, Y., Saito, I. et al. Transgenesis by adenovirus-mediated gene transfer into mouse zona-free eggs. Nat Biotechnol 14, 982–985 (1996). https://doi.org/10.1038/nbt0896-982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0896-982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing