Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biotechnology in Commercial Mushroom Fermentation

Abstract

The United States continues to be the world's largest producer of the common mushroom Agaricus bisporus Lange. This solid-state fermentation is now one of the most challenging and technically demanding of all vegetable cultivations known to man. Currently, it is the only major process in biotechnology which successfully converts cellulosics into useful foods and byproducts. However, it is only recently that we are beginning to gain a better understanding of the distinct and complex microbial processes involved in mushroom cultivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hayes, W.A. and Wright, S.H. 1979. Edible mushrooms. p. 141–176 In: Economic Microbiology, A. H. Rose (ed.), Academic Press, New York.

    Google Scholar 

  2. USDA.1983. 1982–83 Mushroom production and value-up. Crop Reporting Board, U.S. Dept. of Agric., Washington, DC.

  3. Wuest, P.J. 1983. Resources needed to farm the “champignon”. Mycol. 75: 341–350.

    Google Scholar 

  4. Kurtzman, R.H. 1979. Mushrooms: single cell protein from cellulose. p. 305–339 In: Annual Reports on Fermentation Processes. D. Perlman (ed.), Vol. 3, Academic Press, New York.

    Google Scholar 

  5. Hayes, W.A. and Nair, N.G. 1975. The cultivation of Agaricus bisporus and other edible mushrooms, p. 212–248 In: The Filamentous Fungi. J. E. Smith and D. R. Berry (eds.), Vol. 1. E. Arnold. London.

    Google Scholar 

  6. Hayes, W.A. 1974. Mushroom cultivation—prospects and developments. Proc. Bioc. 9: 21–24, 28.

    Google Scholar 

  7. Chang, S.T. 1980. Mushrooms as human food. Bioscience 30: 399–401.

    CAS  Google Scholar 

  8. Hayes, W.A. 1974. Microbiological activity in the casing layer and its relation to productivity and disease control. p. 27–48 In: The Casing Layer. W. A. Hayes (ed.), London.

    Google Scholar 

  9. Lambert, E.B. 1938. Principles and problems of mushroom culture. Bot. Rev. 4: 397–426.

    CAS  Google Scholar 

  10. Hatch, R.T. and Finger, S.M. 1964. Mushroom fermentation. p. 179–199. In: Microbial Technology, 2nd edition. H. J. Peppier and D. Perlman (eds.), Academic Press, New York.

    Google Scholar 

  11. Royse, J. and Schisler, L.C. 1980. Mushrooms: their consumption, production, and culture development. Interdis. Sci. Rev. 5: 324–332.

    Google Scholar 

  12. Block, S.S. 1964. Composting conversion of solid wastes for mushroom growing. Biotech. Bioeng. 6: 403–418.

    Google Scholar 

  13. Chang, S.T. 1980. Mushrooms from waste. Food Policy 5: 64–65.

    Google Scholar 

  14. Hardemare, G., Amid, J.M. and Dur and, R. 1972. Utilisation decomposts urbains en addition au compost de fumier de cheval dans la culture du champignon de couche. Mushr. Sci. 8: 59–65.

    Google Scholar 

  15. Tautorus, T.F. and Chalmers, W.T. 1984. Pilot plant production of single-cell protein utilizing Chaetomium olivaceum. Dev. Ind. Micb. 47: In press.

  16. Kinrus, A. 1974. Techniques and methods in the U. S. mushroom industry. Mushr. Sci. 9: 165–173.

    Google Scholar 

  17. Sinden, J.W. and Mauser, E., 1953.The nature of the composting process and its relation to short composting. Mushr. Sci. 2: 123–130.

    Google Scholar 

  18. Muller, F.M. 1965. Some thoughts about composting. Mushr. Sci. 6: 213–222.

    Google Scholar 

  19. Burrows, S.S. 1951. The chemistry of mushroom composts. J. Sci. Food Agric. 2: 403–410.

    CAS  Google Scholar 

  20. Crawford, J.H. 1983. Composting of agricultural wastes— A review. Proc. Bioc. 18: 14–18.

    Google Scholar 

  21. Gerrits, J.P.G., Bels-Koning, J.C. and Muller, F.M. 1965. Changes in compost constituents during composting, pasteurization, and cropping. Mushr. Sci. 6: 225–243.

    Google Scholar 

  22. Gray, K.R., Sherman, K. and Biddlestone, A.J. 1971. A review of composting— part I. Proc. Bioc. 6: 32–36.

    CAS  Google Scholar 

  23. Mattingly, G.E.G. 1952. Changes in the distribution of nitrogen during the composting of straw. Nature 169: 75–76.

    CAS  Google Scholar 

  24. Schisler, L.C. 1980. Composting. Mushr. News 28: 5–13.

    Google Scholar 

  25. Schobinger, U. 1958. Chemische untcrsuchunger uber die umwand-lung von weizenstrohlignin im laufe der verrottung. Dissertation. E. T. H., Zurich.

    Google Scholar 

  26. Waksman, S.A. and Cordon, T.C. 1939. Thermophilic decomposition of plant residues in composts by pure and mixed cultures of microorganisms. Soil Sci. 47: 217–224.

    CAS  Google Scholar 

  27. Waksman, S.A., Cordon, T.C. and Hulpoi, E.N. 1939. Influence of temperature upon the microbiological population and decomposition processes in composts of stable manure. Soil Sci. 47: 83–112.

    CAS  Google Scholar 

  28. Waksman, S.A. and lycr, K. R. M. 1932. Contributions to our knowledge of the chemical nature and origin of humus: I. On the synthesis of the “humus nucleus”. Soil Sci. 34: 43–70.

    CAS  Google Scholar 

  29. Waksman, S.A. and lyer, K.R.M. 1932. Contributions to our knowledge of the chemical nature and origin of humus: II. The influence of'synthesized' humus compounds and of “natural humus” upon soil microbiological processes. Soil Sci. 34: 71–79.

    CAS  Google Scholar 

  30. Waksman, S.A. and McGrath, J.M. 1931. Preliminary study of chemical processes involved in the decomposition of manure by Agaricus campestris. Amer. J. Bot. 18: 573–581.

    Google Scholar 

  31. Waksman, S.A. and Nissen, W. 1931. Lignin as a nutrient for the cultivated mushroom, Agaricus campestris. Science 74: 271–272.

    CAS  PubMed  Google Scholar 

  32. Waksman, S.A. and Nissen, W. 1932. On the nutrition of the cultivated mushroom and the chemical changes brought about by this organism in the manure compost. Amer. J. Bot. 19: 514–537.

    CAS  Google Scholar 

  33. Fletcher, J.T. 1979. Bacteria and mushrooms. Mushr. J. 82: 451–457.

    Google Scholar 

  34. Waksman, S.A., Umbreit, W.W. and Cordon, T.C. 1939. Thermophilic actinomycetes and fungi in soils and in composts. Soil Sci. 47: 37–60.

    CAS  Google Scholar 

  35. Hayes, W.A. 1969. Microbiological changes in composting wheat straw/horse manure mixtures. Mushr. Sci. 7: 173–186.

    Google Scholar 

  36. Hayes, W.A. 1977. Mushroom nutrition and the role of microorganisms in composting, p. 1–20 In: Composting. W. A. Hayes (ed), London.

    Google Scholar 

  37. Imbernon, M. and Leplae, M. 1972. Microbiologie des substrates destines a la culture du champignon de couche. Mushr. Sci. 8: 363–370.

    Google Scholar 

  38. Oliver, J.M. and Guillaumes, J. 1976. Effect antagoniste exerce in vitro par le mycelium de Psalliota Irispora Lange vis-a-vis de differentes especes fongiques et bacteriennes. Ann. Phyto. 8: 213–231.

    Google Scholar 

  39. Stanek, M. 1972. Microorganisms inhabiting mushroom compost during fermentation. Mushr. Sci. 8: 797–811.

    Google Scholar 

  40. Eastwood, D.J. 1952. The fungus flora of composts. Trans. Brit. Mycol. Soc. 35: 215–220.

    Google Scholar 

  41. Fergus, C.L. 1964. Thermophilic and therrnotolerant molds and actinomycetes of mushroom compost during peak-heating. Mycol. 56: 267–284.

    Google Scholar 

  42. Fermor, T.R., Smith, J.F. and Spencer, D.M. 1979. The microflora of experimental mushroom compost. J. Hort. Sci. 54: 137–147.

    Google Scholar 

  43. Fotdyce, C. 1970. Relative numbers of certain microbial groups present in compost used for mushroom (Agaricus bisporus) propagation. Appl. Micb. 20: 196–199.

    Google Scholar 

  44. Laborde, J., Delmas, J. and d'Hardemare 1969. Note preliminaire sur quelques aspects de l'équilibre microbiologique des composts. Mushr. Sci. 7: 187–203.

    Google Scholar 

  45. Renoux-Blondeau, H. 1959. Etude de certains actinomycetes se develloppart au cours de la pasteurization dui fumir. Leur action sur le developpement ulteriur du champignon de couche. Mushr. Sci. 4: 153–175.

    Google Scholar 

  46. Stanek, M. 1967. Microorganisms colonizing mushroom compost during fermentation. Mykol. sbor. 4: 57–63.

    Google Scholar 

  47. Stanek, M. and Rysava-Zatecka, J. 1967. Effect of aerobic cellulose decomposing microorganisms on the growth of mycelium of cultivated mushroom. Pestovani zampionu 4: 8.

    Google Scholar 

  48. Yung-Chang, W. and Hudson, H.J. 1967. The fungi of wheat straw compost. I. Ecological studies. Trans. Brit. Mycol. Soc. 50: 646–666.

    Google Scholar 

  49. Eddy, B.P. and Jacobs, L. 1976. Mushroom compost as a source of food for Agaricus bisporus. Mushr. J. 38: 56–5967.

    Google Scholar 

  50. Townsley, P.M. 1974. Pure cultural industrial fermentation in the production of mushrooms. Can. Inst. Food Sci. Tech. J. 7: 254–255.

    Google Scholar 

  51. Stanek, M. 1968. Die wirkung der zellulosezersetzenden mikroorganismen auf das wachstum des champignon. Mushr. Sci. 7: 161–172.

    Google Scholar 

  52. Till, O. 1962. Champignonkultur auf steriliziertem nahrsubstrat und die wiederverwendung von abgetragenem kompost. Mushr. Sci. 5: 127–133.

    Google Scholar 

  53. Huhnke, W. and Von Sengbush, R. 1968. Champignonabau auf nicht kompostiertem nä hrsubstrat. Mushr. Sci. 7: 405–409.

    Google Scholar 

  54. Laborde, J. 1980. Rapid substrate making. Mushr. J. 94: 349–355.

    Google Scholar 

  55. Laborde, J. and Delmas, J. 1969. Preparation express des substrats. Bull. FNSACC. 10: 2093–2109.

    Google Scholar 

  56. Laborde, J., Delmas, J., Lamau, J.L. and Berthaud, J. 1972. La preparation express des substrates (P.E.S.) pour la culture du champignon de couche. Mushr. Sci. 8: 675–706.

    Google Scholar 

  57. Smith, J.F. 1974. Selective substrates and rapid methods of preparation. Mushr. J. 23: 424–426.

    CAS  Google Scholar 

  58. Smith, J.F. 1981. Save it: advantages of short-duration composts. Mushr. J. 106: 334–337.

    Google Scholar 

  59. Smith, J.F. 1983. The formulation of mixtures suitable for economic short duration mushroom composts. Scientia Hort. 19: 65–78.

    Google Scholar 

  60. Smith, J.F. and Spencer, D.M. 1976. Rapid preparation of composts suitable for the production of the cultivated mushroom. Scientia Hort. 5: 23–31.

    CAS  Google Scholar 

  61. Smith, J.F. and Spencer, D.M. 1977. The use of high energy carbon sources in rapidly prepared mushroom compost. Scientia Hort. 7: 197–205.

    Google Scholar 

  62. Hayes, W.A. and R and le, P.E. 1969. Use of molasses as an ingredient of wheat straw mixtures used for the Preparation of mushroom composts. Report Glasshouse Crops Res. Inst. p. 142–147.

  63. Hayes, W.A. and R and le, P.E. 1969. The use of water soluble carbohydrates and methyl bromide in the Preparation of mushroom compost. MGA Bull. 28: 81–97.

    Google Scholar 

  64. Pope, S., Knaust, H. and Knaust, K. 1962. Production of compost by thermophilic fungi. Mushr. Sci. 5: 123–126.

    Google Scholar 

  65. Tautorus, T.E. and Townsley, P.M. 1983. Biological control of olive green mold in Agaricus bisporus cultivation. Appl. Env. Micb. 45: 511–515.

    CAS  Google Scholar 

  66. Burden, O.J. and Peterson, R.A. 1972. Cultivating mushrooms. Queensl and Agric.J. 98: 63, 141.

    Google Scholar 

  67. Smith, J. 1969. Commercial mushroom production. Proc. Bioc. 4: 43–4652.

    CAS  Google Scholar 

  68. Bels-Koning, H.C., Gerrits, J.P.G. and Va and rager, M.H. 1962. Some fungi appearing towards the end of composting. Mushr. Sci. 5: 170–179.

    Google Scholar 

  69. Kleyn, J.G. and Wetzler, T.F. 1981. The microbiology of spent mushroom compost and its dust. Can. J. Micb. 27: 748–753.

    CAS  Google Scholar 

  70. Mattoni, R.H.T., Acker, D., Marx, P.F.B., Blank, B.B. and Nishda, J. 1972. Experiments on aflatoxin translocation to the commercial mushroom. Mushr. Sci. 8: 315–319.

    CAS  Google Scholar 

  71. Tendler, M.D. and Burkholder, P.R. 1961. Studies on the thermophilic actinomycetes. I. Methods of cultivation. Appl. Micb. 9: 394–399.

    CAS  Google Scholar 

  72. Ross, R.C. and Harris, P.J. 1983. An investigation into the selective Nature of mushroom compost. Scientia Hort. 19: 55–64.

    Google Scholar 

  73. Persiel, F. 1968. The effect of bacteria on the mycelial growth of Agaricus bisporus (Lge) Sing. Garten. 33: 57–66.

    Google Scholar 

  74. Vedder, P.J.C. 1978. Modern mushroom growing. Educabock, B. V. Culemborg, The Netherl and s.

  75. Stanek, M. 1974. Bacteria associated with mushroom mycelium Agaricus bisporus (Lge) Sing, in hyphosphere. Mushr. Sci. 9: 197–201.

    Google Scholar 

  76. Eger, G. 1962. Einfluchtiges stoffwechsel product des kulturcham-pignons, Agaricus (Psalliota) bisporus (Lge) Sing, mit antibiotisher wirkung. Natur. Schaften 49: 261.

    Google Scholar 

  77. Eger, G. 1972. Experiments and comments on the action of bacteria on sporophore initiation in Agaricus bisporus . Mushr. Sci. 8: 719–725.

    Google Scholar 

  78. Fergus, C.L. 1978. The fungus flora of compost during mycelium colonization by the cultivated mushroom Agaricus brunnescens. Mycol. 70: 636–644.

    Google Scholar 

  79. Hayes, W.A. 1980. Solid state fermentation and the cultivation of edible fungi, p. 175–202. In: Fungal Biotechnology. J. E. Smith, D. R. Berry and B. Kristiansen (eds), Academic Press, New York.

    Google Scholar 

  80. Couvy, J. 1972. Etude de 1'induction de la fructification chez Agaricus bisporus (Lange) Sing (Psalliota hortensis Cke): action du glucose. Comptes rendus hebdemadaire des séances de 1'Académic des Sciences 274: 2475–2477.

    CAS  Google Scholar 

  81. Eger, G. 1961. Untersuchungen iiber die funktion der deckschicht vei der fruchtorperbildung des kulturchampignons Psalliota bispora Lg. Archiv. fur Mikrob. 39: 313–334.

    Google Scholar 

  82. Hayes, W.A. 1972. Nutritional factors in relation to mushroom production. Mushr. Sci. 8: 663–674.

    CAS  Google Scholar 

  83. Hayes, W.A., R and le, P.E. and Last, F.T. 1969. The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lge) Sing. Ann. Appl. Biol. 64: 177–187.

    Google Scholar 

  84. Curto, S. and Favelli, F. 1972. Stimulative effects of certain microorganisms (bacteria, yeasts, microalgae) upon fruitbody formation of Agaricus bisporus (Lge) Sing. Mushr. Sci. 8: 67–74.

    Google Scholar 

  85. Hume, D.P. and Hayes, W. A. 1972. The production of fruit-body in Agaricus bisporus (Lange) Sing, on agar media. Mushr. Sci. 8: 527–532.

    Google Scholar 

  86. O'Donoghue, D. 1965. Relationship between some compost factors and their effects on the yield of Agaricus. Mushr. Sci. 6: 245.

    Google Scholar 

  87. Park, J.Y. and Agnihorti, V.P. 1969. Bacterial metabolites trigger sporophore formation in Agaricus bisporus . Nature 222: 984.

    CAS  PubMed  Google Scholar 

  88. Hayes, W.A. and Nair, N.G. 1974. Effects of volatile metabolic byproducts of mushroom mycelium on the ecology of the casing layer. Mushr. Sci. 9: 259–268.

    Google Scholar 

  89. Wood, D.A. 1976. Primordium formation in axenic cultures of Agaricus bisporus (Lge) Sing. J. Gen. Micb. 95: 313–323.

    Google Scholar 

  90. Stoller, B.B. 1975. Induction of fruiting in the casing layer. Quinones or CO2? Mushr. News 10: 22.

    Google Scholar 

  91. Ingratta, F. 1980. Where are we going? (In mushroom growing). Mushr. J. 85: 47–51.

    Google Scholar 

  92. Chang, S.T. and Hayes, W.A. 1978. The biology and cultivation of edible mushrooms. Academic Press, New York.

    Google Scholar 

  93. Flegg, P.B. and Smith, J.F. 1982. Effect of spawn strain and available substrate on the relative yield of mushrooms in successive flushes. Scientia Hort. 17: 217–222.

    Google Scholar 

  94. Cooke, D. and Flegg, P.B. 1965. The effect of stage of maturity at picking on the flushing of crop of the cultivated mushroom. J. Hort. Sci. 40: 207–212.

    Google Scholar 

  95. Langar, P.N., Sehgal, J.P., Rana, V.K., Singh, H.S. and Garcha, H.S. 1982. Utilization of Agaricus bisporus— cultivated spent wheat straw in the ruminant diets. Ind. J. Animal Sci. 52: 634–637.

    Google Scholar 

  96. Wilson, L.L., Turner, M.L., Weiss, M.J. and Harpster, H.W. 1983. Mushroom industry wastes studied as livestock feeds. Sci. Agric. 30: 7.

    Google Scholar 

  97. Bowden, J.D. and Alien, P.G. 1976. Cultural studies on mushrooms 1974–76. Exp. Hort. 30: 66–75.

    Google Scholar 

  98. Nair, N.G. 1976. Studies on recycling spent compost for mushroom cultivation. Aust. J. Agric. Res. 27: 857–865.

    Google Scholar 

  99. Kleyn, J.G., Johnson, W.M. and Wetzler, T.F. 1981. Microbial aerosols and actinomycetes in etiological considerations of mushroom worker's lungs. Appl. Env. Micb. 41: 1454–1460.

    CAS  Google Scholar 

  100. Lockey, S.D. 1974. Mushroom worker's pneumonitis. Ann. Allergy 33: 282–288.

    PubMed  Google Scholar 

  101. Esser, K. 1977. Concerted breeding in fungi and its biotechnological application. Endeavour 1: 143–148.

    Google Scholar 

  102. Huhnke, W. 1970. Modern mushroom growing. Sci. J. 6: 62–66.

    Google Scholar 

  103. Kurtzman, R.H. 1982. Mushroom growing medium. patent ♯4,333,757. U.S.A.

  104. Tautorus, T.E. and Townsley, P.M. 1984. Analysis of an effective antibiotic (chaetomacin) isolated from a thermophilic Bacillus sp against olive green mold. Appl. Env. Micb. 47: 775–779.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tautorus, T., Townsley, P. Biotechnology in Commercial Mushroom Fermentation. Nat Biotechnol 2, 696–701 (1984). https://doi.org/10.1038/nbt0884-696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0884-696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing