Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic selection for dissociative inhibitors of designated protein–protein interactions

Abstract

Many biological processes rely on protein–protein interactions. These processes include signal transduction, cell cycle regulation, gene regulation, and viral assembly and replication. Moreover, many proteins and enzymes manifest their function as oligomers. We describe here an efficient means to sift through large combinatorial libraries and identify molecules that block the interaction of target proteins in vivo. The power of this approach is demonstrated by the identification of nine-residue peptides from a combinatorial library that inhibit the intracellular dimerization of HIV-1 protease. Fewer than 1 in 106 peptides do so. In vitro biochemical analyses of one such peptide demonstrate that it acts by dissociating HIV-1 protease into monomers, which are inactive catalysts. Inhibition is enhanced further by dimerizing the peptide. This approach enables the facile identification of new molecules that control cellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic selection for dissociative inhibitors of a protein–protein interaction.
Figure 2: In vitro screens to identify true positives from the genetic selection.
Figure 3: Analysis of inhibition of HIV-1 protease by pep52 and dim52.

Similar content being viewed by others

References

  1. Smith G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Matthews, D.J. & Wells, J.A. Substrate phage: selection of protease substrates by monovalent phage display. Science 260, 1113–1117 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Chien, C.-T., Bartel, P.L., Sternglanz, R. & Fields, S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geyer, C.R., Colman-Lerner, A. & Brent, R. “Mutagenesis” by peptide aptamers identifies genetic network members and pathway connections. Proc. Natl. Acad. Sci. USA 96, 8567–8572 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Norman, T.C. et al. Genetic selection of peptide inhibitors of biological pathways. Science 285, 591–595 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Zutshi, R., Brickner, M. & Chmielewski, J. Inhibiting the assembly of protein–protein interfaces. Curr. Opin. Chem. Biol. 2, 62–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Kohl, N.E. et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. USA 85, 4686–4690 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peng, C., Ho, B.K., Chang, T.W. & Chang, N.T. Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. J. Virol. 63, 2550–2556 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Flexner, C. HIV-protease inhibitors. N. Engl. J. Med. 338, 1281–1292 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Wlodawer, A. & Vondrasek, J. Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 27: 249–284.

  12. Lebon, F. & Ledecq, M. 2000. Approaches to the design of effective HIV-1 protease inhibitors. Curr. Med. Chem. 7, 455–477 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Klabe, R.M., Bacheler, L.T., Ala, P.J., Erickson-Viitanen, S. & Meek, J.L. Resistance to HIV protease inhibitors: a comparison of enzyme inhibition and antiviral potency. Biochemistry 37, 8735–8742 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Schramm, H.J., Nakashima, H., Schramm, W., Wakayama, H. & Yamamoto, N. HIV-1 reproduction is inhibited by peptides derived from the N- and C-termini of HIV-1 protease. Biochem. Biophys. Res. Commun. 179, 847–851 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Z.Y., Poorman, R.A., Maggiora, L.L., Heinrikson, R.L. & Kezdy, F.J. Dissociative inhibition of dimeric enzymes. Kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J. Biol. Chem. 266, 15591–15594 (1991).

    CAS  PubMed  Google Scholar 

  16. Babé, L.M., Rose, J. & Craik, C.S. Synthetic “interface” peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Sci. 1, 1244–1253 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Franciskovich, J., Houseman, K., Mueller, R. & Chmielewski, J. A systematic evaluation of the inhibition of HIV-1 protease by its C-terminal and N-terminal peptides. Bioorg. Med. Chem. Lett. 3, 765–768 (1993).

    Article  CAS  Google Scholar 

  18. Schramm, H.J. et al. The inhibition of HIV-1 protease by interface peptides. Biochem. Biophys. Res. Commun. 194, 595–600 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Babé, L.M., Rose, J. & Craik, C.S. Trans-dominant inhibitory human immunodeficiency virus type 1 protease monomers prevent protease activation and virion maturation. Proc. Natl. Acad. Sci. USA 92, 10069–10073 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schramm, H.J. et al. The inhibition of human immunodeficiency virus proteases by ‘interface peptides’. Antiviral Res. 30, 155–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Zutshi, R. et al. Targeting the dimerization interface of HIV-1 protease: inhibition with cross-linked interfacial peptides. J. Am. Chem. Soc. 119, 4841–4845 (1997).

    Article  CAS  Google Scholar 

  22. Fan, X., Flentke, G.R. & Rich, D.H. Inhibition of HIV-1 protease by a subunit of didemnaketal A. J. Am. Chem. Soc. 120, 8893–8894 (1998).

    Article  CAS  Google Scholar 

  23. Ulysse, L.G. & Chmielewski, J. Restricting the flexibility of crosslinked, interfacial peptide inhibitors of HIV-1 protease. Bioorg. Med. Chem. Lett. 8, 3281–3286 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Bouras, A. et al. Design, synthesis, and evaluation of conformationally constrained tongs, new inhibitors of HIV-1 protease dimerization. J. Med. Chem. 42, 957–962 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Schramm, H.J. et al. Lipopeptides as dimerization inhibitors of HIV-1 protease. Biol. Chem. 380, 593–596 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Wlodawer, A. et al. Conserved folding a retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245, 616–621 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Ptashne, M. A genetic switch: phage and higher organisms. Blackwell Science, Oxford, UK; 1992).

    Google Scholar 

  28. Pabo, C.O., Sauer, R.T., Sturtevant, J.M. & Ptashne, M. The lambda repressor contains two domains. Proc. Natl. Acad. Sci. USA 76, 1608–1612 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, J.C., O'Shea, E.K., Kim, P.S. & Sauer, R.T. Sequence requirements for coiled-coils: analysis with lambda repressor–GCN4 leucine zipper fusions. Science 250, 1400–1403 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Amster-Choder, O. & Wright, A. Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. Science 257, 1395–1398 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Bunker, C.A. & Kingston, R.E. Identification of a cDNA for SSRP1, and HMG-box protein, by interaction with the c-Myc oncoprotein in a novel bacterial expression screen. Nucleic Acids Res. 23, 269–276 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu, J.C. Repressor fusions as a tool to study protein–protein interactions. Structure 15, 431–433 (1995).

    Article  Google Scholar 

  33. Jappelli, R. & Brenner, S. Interaction between cAMP-dependent protein kinase catalytic subunit and peptide inhibitors analyzed with lambda repressor fusions. J. Mol. Biol. 259, 575–578 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Zeng, X., Herndon, A.M. & Hu, J.C. Buried asparagines determine the dimerization specificities of leucine zipper mutants. Proc. Natl. Acad. Sci. USA 94, 3673–3678 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeng, X., Zhu, H., Lashuel, H.A. & Hu, J.C. Oligomerization properties of GCN4 leucine zipper e and g position mutants. Protein Sci. 6, 2218–2226 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Z., Murphy, A., Hu, J.C. & Kodadek, T. Genetic selection of short peptides that support protein oligomerization in vivo. Curr. Biol. 9, 417–420 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Z., Zhu, W. & Kodadek, T. Selection and application of peptide-binding peptides. Nat. Biotechnol. 18, 71–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Darke, P.L. et al. Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates. Biochemistry 33, 98–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Houghten, R.A. Peptide libraries: criteria and trends. Trends Genet. 9, 235–239 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Lu, Z. et al. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein–protein interactions. Biotechnology 13, 366–372 (1995).

    CAS  PubMed  Google Scholar 

  41. Grant, S.K. et al. Use of protein unfolding studies to determine the conformational and dimeric stabilities of HIV-1 and SIV proteases. Biochemistry 31, 9491–9501 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Todd, M.J., Semo, N. & Freire, E. The structural stability of the HIV-1 protease. J. Mol. Biol. 283, 475–488 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Condra, J.H. et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374, 569–571 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Condra, J.H. Resistance to HIV protease inhibitors. Haemophilia 4, 610–615 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Li, T.S. et al. Long-lasting recovery in CD4 T-cell function and viral-load reduction after highly active antiretroviral therapy in advanced HIV-1 disease. Lancet 351, 1682–1686 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Palella, F.J. Jr. et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N. Eng. J. Med. 338, 853–860 (1998).

    Article  Google Scholar 

  47. Piketty, C. et al. Discrepant responses to triple combination antiretroviral theraphy in advanced HIV disease. AIDS 12, 745–750 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Rockstroh, J.K. et al. Failure of double protease inhibitor therapy as a salvage therapy for HIV-infected patients resistant to conventional triple therapy. Eur. J. Med. Res. 4, 271–274 (1999).

    CAS  PubMed  Google Scholar 

  49. Palmer, S., Shafer, R.W. & Merigan, T.C. Highly drug-resistant HIV-1 clinical isolates are cross-resistant to many antiretroviral compounds in current clinical development. AIDS 13, 661–667 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Schinazi, R.F., Larder, B.A. & Mellors, J.W. Mutations in retroviral genes associated with drug resistance. Antivir. News 5, 129–142 (1997).

    Google Scholar 

  51. Rose, J.R., Salto, R. & Craik, C.S. Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J. Biol. Chem. 268, 11939–11945 (1993).

    CAS  PubMed  Google Scholar 

  52. LaBean, T.H. & Kauffman, S.A. Design of synthetic gene libraries encoding random sequence proteins with desired ensemble characteristics. Protein Sci. 2, 1249–1254 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cwirla, S.E., Peters, E.A., Barrett, R.W. & Dower, W.J. Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA 87, 6378–6382 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ido, E., Han, H.P., Kezdy, F.J. & Tang, J. Kinetic studies of human immunodeficiency virus type 1 protease and its active-site hydrogen bond mutant A28S. J. Biol. Chem. 266, 24359–24366 (1991).

    CAS  PubMed  Google Scholar 

  55. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matayoshi, E.D., Wang, G.T., Krafft, G.A. & Erickson, J. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247, 954–958 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Wondrak, E.M., Nashed, N.T., Haber, M.T., Jerina, D.M. & Louis, J.M. A transient precursor of the HIV-1 protease. Isolation, characterization, and kinetics of maturation. J. Biol. Chem. 271, 77–81 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J.C. Hu, J. Tang, and W.S. Reznikoff for providing plasmids, and L.L. Kiessling, D.H. Rich, and G.P. Roberts for advice. S.-H.P. was supported by a Korean Government Fellowship for Overseas Study. R.T.R. is an H.I. Romnes Faculty Fellow at the University of Wisconsin–Madison. This work was supported by grant GM44783 (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald T. Raines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SH., Raines, R. Genetic selection for dissociative inhibitors of designated protein–protein interactions. Nat Biotechnol 18, 847–851 (2000). https://doi.org/10.1038/78451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing