Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Immunoglobulin-like domains define the nerve growth factor binding site of the TrkA receptor

Abstract

Nerve growth factor (NGF) is involved in the development and maintenance of the nervous system. NGF binds with high affinity to the extracellular region of the tyrosine kinase receptor TrkA. This domain comprises leucine and cysteine rich motifs, followed by two immunoglobulin like (Ig-like) domains. We describe the expression and purification of recombinant Ig-like domains. Fluorescence and circular dichroism spec-troscopy show that the protein is folded into a compact globular structure and contains mainly β-sheet secondary structure. Recombinant protein binds to NGF and can inhibit NGF bioactivity both in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hatanaka, H., Tsuku, H., and Nihonmatsu, I. 1988. Developmental change in the nerve growth factor action from induction of choline acetyltransferase to promotion of cell survival in cultured basal forebrain cholinergic neurons from postnatal rats. Dev. Brain Res. 39: 85–95.

    Article  CAS  Google Scholar 

  2. Thoenen, H., Bandtlow, H. and Heumann, R. 1987.The physiological function of nerve growth factor in the central nervous system: comparison with the periphery.Rev. Physiol. Biochem. Pharmacol. 109: 145–178.

    Article  CAS  Google Scholar 

  3. Olsen, L., Nordburg, A., von Hoist, H., Backman, I., Ebendal, T., Alafuzoff, I., et al. 1992 Nerve growth factor affects 11 C-nicotine binding, blood flow, EEG and verbal episodic memory in an Alzheimer patient (case report). Neural Transm. Park. Dis. Dement. Sect. 4: 79–95.

    Article  Google Scholar 

  4. Rodriguez-Tebar, A., Dechant, G., Gotz, R., and Barde, Y.A. 1992 Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth-factor and brain-derived neurotrophic factor. EMBO J. 11: 917–922.

    Article  CAS  Google Scholar 

  5. . Martin-Zanca, D., Oskam, R., Mitra, G., Copeland, T., and Barbacid, M. 1989. Molecular and biochemical-characterization of the human trk proto-oncogene. Mol. Cell Biol. 9: 24–33.

    Article  CAS  Google Scholar 

  6. Ip, N.Y., Stitt, T.N., Tapley, P., Klein, R., Glass, D.J., Fandl, J., et al. 1993 Similarities and differences in the way neurotrophins interact with the trk receptors in neuronal and nonneuronal cells. Neuron 10: 137–149.

    Article  CAS  Google Scholar 

  7. Klein, P.,, Lamballe, F., Bryant, S., and Barbacid, M. 1982. The trkB tyrosine protein-kinase is a receptor for neurotrophin-4. Neuron 8: 947–956.

    Article  Google Scholar 

  8. Lamballe, F., Klein, R., and Barbacid, M., 1991. TrkC, a new member of the trk family of tyrosine protein-kinases, is a receptor for neurotrophin-3. Cell 66: 967–979.

    Article  CAS  Google Scholar 

  9. Urfer, R., Tsoulfas, P., Soppet, D., Escandon, E., Parada, L.F., and Presta, L.G. 1994. The binding epitopes of neurotrophin-3 to its receptors trkC and gp75 and the design of a multifunctional human neurotrophin. EMBOJ. 13: 5896–5909.

    Article  CAS  Google Scholar 

  10. Schneider, R., and Schweiger, M. 1991. A novel modular mosaic of cell adhesion motifs in the extracellular domains of the neurogenic trk and trkB tyrosine kinase receptors. Oncogene 6: 1807–1811.

    CAS  Google Scholar 

  11. Williams, A.F., and Barclay, A.N. 1988. The immunoglobulin superfamily-domains for cell-surface recognition. Ann. Rev. Immunol. 6: 381–405.

    Article  CAS  Google Scholar 

  12. McDonald, N.Q., and Chao, M.V. 1995. Structural determinants of neurotrophin action. J. Blol. Chem. 270: 19669–19672.

    Article  CAS  Google Scholar 

  13. Perez, P., Coll, P.M. Hempstead, B.L., Martin-Zanca, D. and Chao, M.V. 1995. NGF binding to the trk tyrosine kinase receptor requires the extracellular immunoglobulin-like domains. Mol. Cell. Neurosci. 6: 97–105.

    Article  CAS  Google Scholar 

  14. Urfer, R., Tsoulfas, P., Oconnell, L., Shelton, D.L., Parada, L.F., and Presta, L.G. 1995. An immunoglobulin-like domain determines the specificity of neurotrophin receptors.EMBOJ. 14: 2795–2805.

    Google Scholar 

  15. Windisch, J.M., Marksteiner, R., and Schneider, R. 1995. Nerve growth-factor binding-site on trkA mapped to a single 24-amino acid leucine-rich motif. J. Biol. Chem. 270: 28133–28138.

    Article  CAS  Google Scholar 

  16. Clary, D.O., and Reichardt, L.F. 1994. An alternatively spliced form of the nerve growth-factor receptor trka confers an enhanced response to neurotrophin-3. Proc. Natl. Acad. Sci. USA 91: 11133–11137.

    Article  CAS  Google Scholar 

  17. Alien, S.J., Dawbarn, D., Eckford, S.D., Wilcock, G.K., Ashcroft, M., Colebrook, S.M., et al. 1994. Cloning of a noncatalytic form of human trkb and distribution of messenger-RNA for trkb in human brain. Neuroscience 60: 825–834.

    Article  Google Scholar 

  18. Yang, J.T., Wu, C.S.C., and Martinez, H.M. 1986. Calculation of protein conformation from circular-dichroism. Methods Enzymol. 130: 208–269.

    Article  CAS  Google Scholar 

  19. Ikeda, K., Hamaguchi, K., and Migita, S. 1968 Circular dichroism of Bence-Jones proteins and immunoglobulins. J. Biochem. 63: 654–660.

    Article  CAS  Google Scholar 

  20. Vale, R.D., and Shooter, E.M. 1985. Assaying binding of nerve growth-factor to cell-surface receptors. Methods Enzymol. 109: 21–39.

    Article  CAS  Google Scholar 

  21. Loeb, D.M., Maragos, J., Martinzanca, D., Chao, M.V., Parada, L.F., and Green, L.A. 1991. The trk protooncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC12 cell-lines. Cell 66: 961–966.

    Article  CAS  Google Scholar 

  22. Kaplan, D.R., Hempstead, B.L., Martinzanca, D., Chao, M.V., and Parada, L.F. 1991. The trk protooncogene product?a signal transducing receptor for nerve growth-factor. Science 252: 554–558.

    Article  CAS  Google Scholar 

  23. Fujimori, K., and Fukuzono, S. 1992 Overproduction of biologically-active human nerve growth factor in Escherichia coli. Biosci. Biotech. Biochem. 56: 1985–1990.

    Article  CAS  Google Scholar 

  24. Otten, U., Baumann, J.B., and Girard, J. 1984. Nerve growth-factor induces plasma extravasation in rat skin. Eur. J. Pharmacol 106: 199–201.

    Article  CAS  Google Scholar 

  25. Bennett, G.S., and Brain, S.D., 1996 Nerve growth-factor induces an immediate and also a late-phase of edema formation in rat skin. Br. J. Pharmacol. 119: P55.

    Google Scholar 

  26. de Vos, A.M., Ultsch, M., Kossiakoff, A.A. 1992. Human growth-hormone and extracellular domain of its receptor-crystal-structure of the complex. Science 255: 306–312.

    Article  CAS  Google Scholar 

  27. Yayon, A., Zimmer, Y. Shen, G.H., Avivi, A., Yarden, Y., and Givol, D. 1992. A confined variable region confers ligand specificity on fibroblast growth-factor receptors-implications for the origin of the immunoglobulin fold. EMBO J. 11: 1885–1890.

    Article  CAS  Google Scholar 

  28. Ze, W., Myles, G.M., Brandt, C.S., Lioubin, M.N., and Rohrschneider, L. 1993. Identification of the ligand-binding regions in the macrophage-colony-stimulating factor-receptor extracellular domain. Mol. Cell Biol. 13: 5348–5359.

    Article  Google Scholar 

  29. Diamond, M.S., Staunton, D.E., Marlin, S.D., and Springer, T.A. 1991 Binding of the integrin Mac-1 (CD11b/CD18) to the 3rd immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65: 961–971.

    Article  CAS  Google Scholar 

  30. Heidaran, M.A., Mahadevan, D., and Larochelle, W.J. 1995 Beta-PDGFr-igG chimera demonstrates that human beta-PDGFR ig-like domain-1 to domain-3 are sufficient for high-affinity PDGF-BB binding. FASEB J. 9: 140–145.

    Article  CAS  Google Scholar 

  31. Windisch, J.M., Marksteiner, R., Lang, M.E., Auer, B. and Schneider, R. 1995. Brain derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 bind to a single leucine-rich motif of TrkB. Biochemistry 34: 11256–11263.

    Article  CAS  Google Scholar 

  32. MacDonald, J.I.S., and Meakin, S.O. 1996. Deletions in the extracellular domain of Rat TrkA lead to an altered differentiate phenotype in neurotrophin responsive cells. Mol. Cell. Neurosci. 7: 371–390.

    Article  CAS  Google Scholar 

  33. Lewin, G.R. 1995. Neurotrophic factors and pain. Semin. Neurosci. 119: P55.

    Google Scholar 

  34. Rost, B., and Sander, C. 1993. Prediction of protein secondary structure at better than 70-percent accuracy. J. Mol. Biol. 232: 584–599.

    Article  CAS  Google Scholar 

  35. Sambrook, J., Fritsch, E.R., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY.

    Google Scholar 

  36. Treanor, J.J.S., Dawbarn, D., Alien, S.J., Macgowan, S.H., and Wilcock, G.K. 1991. Low affinity nerve growth-factor receptor-binding in normal and Alzheimer's-disease basal forebrain. Neuroscience Letters. 121: 73–76.

    Article  CAS  Google Scholar 

  37. Brain, S.D., and Williams, T.J. 1985 Inflammatory edema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular-permeability. Br. J. Pharmacol. 86: 855–860.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holden, P., Asopa, V., Robertson, A. et al. Immunoglobulin-like domains define the nerve growth factor binding site of the TrkA receptor. Nat Biotechnol 15, 668–672 (1997). https://doi.org/10.1038/nbt0797-668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0797-668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing