Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Structure-based design and protein engineering of intersubunit disulfide bonds in gonadotropins

Abstract

Pairs of cystine residues were introduced in the α- and β-subunits of human choriogonadotropin at positions with optimal geometries for the formation of disulfide bonds. Using the homology with luteiniz-ing hormone and follicle stimulating hormone, similar mutations were carried out in these glycoprotein hormones. In nearly all mutants the corresponding disulfide bonds were formed leading to a non-natural, covalent linkage between the α- and β-subunits. The mutants typically display wild-type receptor binding and bioactivity. The mutants with non-natural intersubunit disulfide bonds display enhanced thermostabilities relative to the corresponding heterodimeric glycoprotein hormones, rendering them candidates for long acting gonadotropins with enhanced shelf lives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Combarnous, Y. 1992. Molecular basis of the specificity of binding of glycoprotein hormones to their receptors. Endocr Rev. 13: 670–691.

    Article  CAS  PubMed  Google Scholar 

  2. Lapthorn, A. J., Harri, D. C., Littlejohn, A. Lustbader, J. W., Canfield, R. E., Machin K. J., et al. 1994. Crystal structure of human chononic gonadotropin. Nature 369: 455–461.

    Article  CAS  PubMed  Google Scholar 

  3. Wu, H., Lustbader, J.W., Liu Y., Canfield, R. E., and Hendrickson W.A. 1994. Structure of the human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure 2: 545–558.

    Article  CAS  PubMed  Google Scholar 

  4. Isaacs, N. W. 1995. Cystine knots. Curr. Opin. Struct. Biol. 5: 391–395.

    Article  CAS  PubMed  Google Scholar 

  5. Pierce, J. and Parsons, T. 1981. Glycoprotein hormones: structure and function. Annu. Rev. Biochem. 50: 465–495.

    Article  CAS  PubMed  Google Scholar 

  6. Sugahara, T., Pixley, M. R., Minami, S., Perlas, E., Ben-Menahem, D., Hsueh, A. J. W., and Boime, I. 1995. Biosynthesis of a biologically active single chain containing the human common α and chononic gonadotropm β subunits in tandem. Proc Nail Acad Set USA 92: 2041–2045.

    Article  CAS  Google Scholar 

  7. Narayan, P., Wu, C., and Puett, D. 1995. Functional expression of yoked human chorionic gonadotropin in baculovirus-infected insect cells. Mol. Endocrinol. 9: 1720–1726.

    CAS  PubMed  Google Scholar 

  8. Ben-Menahem, D. and Boime, I. 1996. Converting heterodimeric gonadotropins to genetically linked single chains. Trends Endocnnol. Metab. 7: 100–105.

    Article  CAS  Google Scholar 

  9. Sugahara, T., Sato, A., Kudo, M., Ben-Menahem, D., Pixley, M. R., Hsueh, A. J. W., and Boime, I. 1996. Expression of biologically active fusion genes encoding the common α subunit and the follicle-stimulating β subunit. J. Biol. Chem. 271: 10445–10448.

    Article  CAS  PubMed  Google Scholar 

  10. Sugahara, T., Grootenhuis, P.D.J., Sato, A., Kudo, M., Ben-Menahem, D., Pixley, M. R., et al. 1996. Expression of biologically active fusion genes encoding the common α subunit and either the CG β or FSH β subunits role of a linker sequence. Mol. Cell Endocrinol. 125: 71–77.

    Article  PubMed  Google Scholar 

  11. Heikoop, J., van Beuningen-de Vaan, M. J. A. C. M., van den Boogaart, P., and Grootenhuis, P.D.J. 1997. Single chain human gonadotropins evaluation of subunit truncation and the nature of the spacer. Eur. J. Biochem. 245: 656–662.

    Article  CAS  PubMed  Google Scholar 

  12. Shaw, A. and Bott, R. 1996. Engineering enzymes for stability. Curr. Opm. Struct. Biol. 6: 546–550.

    Article  CAS  Google Scholar 

  13. Matsumara, M. and Matthews, B.W. 1991. Stabilization of functional proteins by introduction of multiple disulfide bonds. Meth. Enzymol. 202: 336–356.

    Article  Google Scholar 

  14. Creighton, T.E., Zapun, A., and Darby, N. J. 1995. Mechanisms and catalysts of disulphide bond formation in proteins. Trends Biotechnol. 13: 18–23.

    Article  CAS  PubMed  Google Scholar 

  15. Creighton, T.E., Darby, N. J., and Kemmink, J. 1996. The roles of partly folded intermediates in protein folding. FASEB J. 10: 110–118.

    Article  CAS  PubMed  Google Scholar 

  16. Ruddon, R.W., Sherman, S.A., and Bedows, E. 1996. Protein folding in the endoplasmatic reticulum: lessons from the human chorionic gonadotropin β subunit. Protein Sci. 5: 1443–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blundell, T.L. 1994. Problems and solutions in protein engineering—towards rational design. Trends Biotechnol. 12: 145–148.

    Article  CAS  PubMed  Google Scholar 

  18. Hazes, B. and Dijkstra, B. W. 1988. Model building of disulfide bonds in proteins with known three-dimensional structure. Protein Eng. 2: 119–125.

    Article  CAS  PubMed  Google Scholar 

  19. Boime, I., Ben-Menahem, D., Kudo, M., Sugahara, T., Sato, A., and Hsueh, A. J. W. 1997. Conversion of heterodimeric gonadotropins to genetically linked single chains new approaches to structure-activity relationships and analog design, in FSH Action and Intraovarian Regulation Parthenon Publishing Casterton Hall, UK.

  20. Matzuk, M. M., Keene, J. L., and Boime, I. 1989. Site specificity of the chononic gonadotropin N-linked oligosaccharides in signal transduction. J. Biol. Chem. 264: 2409–2414.

    CAS  PubMed  Google Scholar 

  21. Valove, F.M., Finch, C., Anasti, J. N., Froehlich, J., and Flack, M.R. 1994. Receptor binding and signal transduction are dissociable functions requiring different sites on follicle stimulating hormone. Endocrinol. 135: 2657–2661.

    Article  CAS  Google Scholar 

  22. Puett, D., Huang, J., and Xia, H. 1994. Delineation of subunit and receptor contact sites by site-directed mutagenesis of hCG β, pp 122–134 in Glycoprotein Hormones. Lustbader, J. W., Puett, D. and Ruddon, R. W. (eds) Sprmger-Verlag, New York

    Book  Google Scholar 

  23. Chen, F. and Puett, D. 1992. A single amino acid residue replacement in the β subunit of human chononic gonadotrophm results in the loss of biological activity. J. Mol. Endocrinol. 8: 87–89.

    Article  CAS  PubMed  Google Scholar 

  24. Pace, C.N. 1990. Conformational stability of globular proteins. Trends Biotechnol. 15: 14–17.

    CAS  Google Scholar 

  25. Higuchi, R. 1989 Using PCR to engineer DNA, pp. 61–70 in PCR Technology, Principles and Applications for DNA Amplification. Erlich, H. A. (ed.) Stockton Press, New-York.

    Google Scholar 

  26. Olijve, W., De Boer, W., Mulders, J.W.M., and Van Wezenbeek P.M.G.F. 1996. Molecular biology and biochemistry of human recombinant follicle stimulating hormone (Puregon). Mol. Hum. Reprod. 2: 371–382.

    Article  CAS  PubMed  Google Scholar 

  27. Talmadge, K., Vamvakopoulos N. C., and Fiddes, J. C. 1984. Evolution of the genes for the β subunits of human chononic gonadotropm and luteinizing hormone. Nature 307: 37–40.

    Article  CAS  PubMed  Google Scholar 

  28. Fiddes, J. C. and Goodman H. M. 1980. The cDNA for the β-subunit of human chorionic gonadotropin suggests evolution of a gene by readthrough into the 3′-untranslated region. Nature 286: 684–687.

    Article  CAS  PubMed  Google Scholar 

  29. Jia, X. -C., Oikawa, M., Bo, M., Tanaka, T., Ny, T., Boime, I, and Hsueh A. J. W. 1991. Expression of human luteinizing hormone (LH) receptor: interaction with LH and chononic gonadotropm from human but not equine, rat, and ovine species. Mol. Endocrinol. 5: 759–768.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikoop, J., Boogaart, P., Mulders, J. et al. Structure-based design and protein engineering of intersubunit disulfide bonds in gonadotropins. Nat Biotechnol 15, 658–662 (1997). https://doi.org/10.1038/nbt0797-658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0797-658

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing