Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Recombinant Polymeric IgG: An Approach to Engineering More Potent Antibodies

Abstract

IgM and IgG are the only classes of immunoglobulin capable of initiating the classical complement cascade. IgM, however, fixes complement much more effectively than IgG making it a more attractive Fc for some immunotherapeutic strategies. IgG, on the other hand, triggers additional effector functions mediated through γ specific Fc receptors. Using a generalizable technique we have produced IgM-like polymers of IgG that possess both the Fcγ receptor binding properties of IgG and the more potent complement activity of IgM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shenoy, A.M. and Brahtni, Z. 1989. Human IgGl and mouse IgG3 but not monomeric IgM or IgE facilitate antibody-dependent cell-mediated cytotoxicity by human natural killer cells. Nat. Immun. Cell Growth Regul. 8: 338–48.

    CAS  PubMed  Google Scholar 

  2. Bruggemann, M., Teale, C., Clark, M., Bindon, C. and Waldmann, H. 1989. A matched set of rat/mouse chimeric antibodies. Identification and biological properties of rat H chain constant regions mu, gamma 1, gamma 2a, gamma 2b, gamma 2c, epsilon, and alpha. J. Immunol. 142: 3145–50.

    CAS  PubMed  Google Scholar 

  3. Vieira, P. and Rajewsky, K. 1988. The half-lives of serum immunoglobulins in adult mice. Eur. J. Immunol. 18: 313–6.

    Article  CAS  Google Scholar 

  4. Davis, A.C., Roux, K.H., Pursey, J. and Shulman, M.J. 1989. Intermoiecular disulfide bonding in IgM: effects of replacing cysteine residues in the mu heavy chain. EMBO J. 8: 2519–26.

    Article  CAS  Google Scholar 

  5. Kabat, E.A., Wu, T.T., Reid-Miller, M., Perry, H.M. and Gottesman, K.S. 1987. Sequences of Proteins of Immunological Interest, 4th ed. U. S. Department of Health and Human Services, Washington, DC.

    Google Scholar 

  6. Dangl, J.L., Wensel, T.G., Morrison, S.L., Stryer, L., Herzenberg, L.A. and Oi, V.T. 1988. Segmental flexibility and complement fixation of genetically engineered chimeric human, rabbit and mouse antibodies. EMBO J. 7: 1989–94.

    Article  CAS  Google Scholar 

  7. Oi, V.T. and Morrison, S.L. 1986. Chimeric Antibodies. BioTechniques 4: 214–221.

    CAS  Google Scholar 

  8. Shin, S.U. and Morrison, S.L. 1989. Production and properties of chimeric antibody molecules. Methods Enzymol. 178: 459–76.

    Article  CAS  Google Scholar 

  9. Tao, M.H. and Morrison, S.L. 1989. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J. Immunol. 143: 2595–601.

    CAS  PubMed  Google Scholar 

  10. Uzgiris, E.E. and Kornberg, R.D. 1983. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen—antibody—complement complexes. Nature 301: 125–9.

    Article  CAS  Google Scholar 

  11. Feinstein, A., Richardson, N.E., Gorick, B.D. and Hughes-Jones, N.C. 1983. Immunoglobulin M conformational change is a signal for complement activation, p. 47–57. In: Protein Conformation as an Immunological Signal. F. Celada, V. N. Schumaker and E. E. Sercarz (Eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  12. Burton, D.R. and Woof, J.M. 1992. Human antibody effector function. Adv. Immunol. 51: 1–84.

    Article  CAS  Google Scholar 

  13. Tan, L.K., Shopes, R.J., Oi, V.T. and Morrison, S.L. 1990. Influence of the hinge region on complement activation, C1q binding, and segmental flexibility in chimeric human immunoglobulins [published erratum appears in Proc. Natl. Acad. Sci. USA 1991 Jun 1;88 (11): 5066]. Proc. Nad. Acad. Sci. USA 87: 162–6.

    Google Scholar 

  14. Shuford, W., Raff, H.V., Finley, J.W., Esselstyn, J. and Harris, L.J. 1991. Effect of light chain V region duplication on IgG oligomerization and in vivo efficacy. Science 252: 724–7.

    Article  CAS  Google Scholar 

  15. French, D.L., Pollock, R.R., Aguila, H.L. and Scharff, M.D. 1991. The molecular and biochemical characterization of mutant monoclonal antibodies with increased antigen binding. J. Immunol. 146: 2010–6.

    CAS  PubMed  Google Scholar 

  16. Shopes, B. 1992. A genetically engineered human IgG mutant with enhanced cytolytic activity. J. Immunol. 148: 2918–22.

    CAS  PubMed  Google Scholar 

  17. Caron, P.C., Laird, W., Co, M.S., Avdalovic, N.M., Queen, C. and Schein-berg, D.A. 1992. Engineered humanized dimeric forms of IgG are more effective antibodies. J. Exp. Med. 176: 1191–5.

    Article  CAS  Google Scholar 

  18. Sitia, R., Neuberger, M.S. and Milstein, C. 1987. Regulation of membrane IgM expression in secretory B cells: translational and post-translational events. EMBO J. 6: 3969–77.

    Article  CAS  Google Scholar 

  19. Sitia, R., Neuberger, M., Alberini, C., Bet, P., Fra, A., Valetti, C., Williams, G. and Milstein, C. 1990. Developmental regulation of IgM secretion: the role of the carboxy-terminal cysteine. Cell 60: 781–90.

    Article  CAS  Google Scholar 

  20. Tao, M.H., Smith, R.I. and Morrison, S.L. 1993. Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J. Exp. Med. 178: 661–7.

    Article  CAS  Google Scholar 

  21. Hughes, J.N. and Gardner, B. 1979. Reaction between the isolated globular sub-units of the complement component C1q and IgG-complexes. Mol. Immunol. 16: 697–701.

    Article  Google Scholar 

  22. Zoller, M.J. and Smith, M. 1984. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3: 479–88.

    Article  CAS  Google Scholar 

  23. Boulianne, G.L., Hozumi, N. and Shulman, M.J. 1984. Production of functional chimaeric mouse/human antibody. Nature 312: 643–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R., Morrison, S. Recombinant Polymeric IgG: An Approach to Engineering More Potent Antibodies. Nat Biotechnol 12, 683–688 (1994). https://doi.org/10.1038/nbt0794-683

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0794-683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing