Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Predicting the Solubility of Recombinant Proteins in Escherichia coli

Abstract

We have studied the cause of inclusion body formation in Escherichia coli grown at 37°C using statistical analysis of the composition of 81 proteins that do and do not form inclusion bodies. Six composition derived parameters were used. In declining order of their correlation with inclusion body formation, the parameters are charge average, turn forming residue fraction, cysteine fraction, proline fraction, hydrophilicity, and total number of residues. The correlation with inclusion body formation is strong for the first two parameters but weak for the last four. This correlation can be used to predict the probability that a protein will form inclusion bodies using only the protein's amino acid composition as the basis for the prediction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, D.C., Van Frank, R.M., Muth, W.L. and Barnett, J.P. 1982. Cytoplasmic inclusion bodies in Escherichia coli producing bio-synthetic human insulin protein. Science 215: 684–687.

    Google Scholar 

  2. Schein, C.H. 1990. Solubility as a function of protein structure and solvent components. Bio/Technology 8: 308–317.

    CAS  Google Scholar 

  3. Carrell, R.W., Lehmann, H. and Hutchisdon, H.F. 1966. Haemoglobin Koln (beta 98 valine-methionine): an unstable protein causing inclusion body anemia. Nature 210: 915–916.

    Article  CAS  PubMed  Google Scholar 

  4. Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology 6: 291–294.

    CAS  Google Scholar 

  5. Krueger, J.K., Kulke, M.N., Schutt, C. and Stock, J. 1989. Protein inclusion body formation and purification. BioPharm. 2: 40–45.

    CAS  Google Scholar 

  6. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240: 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mitraki, A. and King, J. 1989. Protein folding intermediates and inclusion body formation. Bio/Technology 7: 690–697.

    CAS  Google Scholar 

  8. Schein, C.H. 1989. Production of soluble proteins in bacteria. Bio/Technology 7: 1141–1149.

    CAS  Google Scholar 

  9. Nagai, K., Thogersen, H.C. and Luisi, B.F. 1988. Refolding and crystallographic studies of eukaryotic proteins produced in Escherichia coli. Biochem. Soc. Trans. 16: 108–110.

    Article  CAS  PubMed  Google Scholar 

  10. Brasnet, A.H., Schoemaker, J.M. and Marston, F.A.O. 1985. Examination of calf prochymosin accumulation in Escherichia coli: disulfide linkages are a structural component of prochymosin containing inclusion bodies. EMBO J. 4: 775–780.

    Article  Google Scholar 

  11. Chou, P.Y. and Fasman, G.D. 1978. Empirical predictions of protein conformation. Ann. Rev. Biochem. 47: 251–276.

    Article  CAS  PubMed  Google Scholar 

  12. Evans, P.A., Dobson, C.M., Kautz, R.A., Hatfull, G. and Fox, R.O. 1987. Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis. Nature 329: 266–268.

    Article  CAS  PubMed  Google Scholar 

  13. Tanford, C. 1958. Physical Chemistry of Macromolecules. John Wiley & Sons, New York.

    Google Scholar 

  14. Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B. and Schaechter, M. (Eds.). 1987. Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Volume 2, p. 222–243. American Society for Microbiology. Washington, B.C.

    Google Scholar 

  15. Riddick, T. 1968. Control of Colloid Stability Through Zeta Potential. Livingston Publishing Company, Wynnewood, Pennsylvania.

    Google Scholar 

  16. Kauzmann, W. 1959. Structural factors involved in protein stability. Advances in Protein Chemistry. 14: 19–29.

    Google Scholar 

  17. Arakawa, T. and Timasheff, S.N. 1985. Theory of protein solubility. Meth. Enzym. 114: 49–77.

    Article  CAS  PubMed  Google Scholar 

  18. Hopp, T.P. and Woods, K.R. 1981. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA 78: 3824–3828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fisher, R.A. 1936. The use of multiple measurements in taxonomic problems. Ann. Eugenics 7: 179–188.

    Article  Google Scholar 

  20. Devereux, J., Haeberli, P. and Smithies, O. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acid Res. 12: 387–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. King, R.S. and Bryant, J. 1982. Applied Statistics Using the Computer. Mayfield Publishing Company, Palo Alto, CA.

    Google Scholar 

  22. Dixon, W.J. 1988. BMDP Statistical Software Manual. University of California Press, Berkeley.

    Google Scholar 

  23. Hamuda, K., Furisawa, H. and Minagawa, T. 1986. Overproduction and purification of the products of bacteriophage T3 genes 18 and 19. Virology 151: 110–118.

    Article  Google Scholar 

  24. Grumont, R., Worachart, S. and Sant, D.V. 1988. Heterologous expression of the bifunctional thymidylate synthase-dihydrofolate reductase from Leishmania major. Biochemistry 27: 3776–3780.

    Article  CAS  PubMed  Google Scholar 

  25. Bond, J.H., Van Kimnenade, M.W., Schumacher, C. and Kastelein, R.A. 1988. Expression, renaturation, and purification of recombinant human Il-4 in E. coli. Biochem. J. 174: 109–114.

    Google Scholar 

  26. Roberts, J.D. and McMacken, R. 1983. The bacteriophage λO replication protein: isolation and characterization of the amplified initiator. Nucleic Acids Res. 11: 7435–7452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cabilly, S., Riggs, A.D., Shivelly, J., Holmes, W., Rey, M., Perry, L.J., Heyneker, H.L. and Wetzel, R. 1984. Generation of antibody activity from immunoglobulin polypeptide chains produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 3273–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma, S.K., Evans, D.B., Tomich, C., Cornette, J.C. and Ulrich, R.G. 1987. Folding and reactivation of recombinant human prorenin. Biotechnology and Applied Biochemistry 9: 181–193.

    CAS  PubMed  Google Scholar 

  29. Halenbeck, R., Kawasaki, E., Wrin, J. and Koths, K. Renaturation and purification of biologically active recombinant human macrophage colony-stimulating factor expressed in E. coli. Bio/Technology 7: 710–715.

    Article  CAS  Google Scholar 

  30. Bergman, C., Dodt, J., Fink, E., Gassen, H.G. and Kohler, S. 1986. Chemical synthesis and expression of a gene coding for hirudin, the thrombin-specific inhibitor from the leech Hirudo medicinalis. Biol. Chem. Hoppe-Seyler. 367: 731–740.

    Article  Google Scholar 

  31. Weis, J.H., Enquist, L.W., Salstrom, J.S. and Watson, R.J. 1983. An immunologically active chimaeric protein containing herpes simplex virus type 1 glycopotein D. Nature 302: 72–75.

    Article  CAS  PubMed  Google Scholar 

  32. Lunn, C.A., Kathju, S., Wallace, B.J., Kushner, S.R. and Pigiet, V. 1984. Amplification and purification of plasmid-encoded thioredoxin from Escherichia coli K12. J. of Biol. Chem. 259: 10469–10474.

    CAS  Google Scholar 

  33. Gross, M., Sweet, R.W., Sathe, G., Yokoyama, S., Fasano, O., Gold-farb, M., Wigler, M. and Rosenberg, M. 1985. Purification and characterization of human H-ras proteins expressed in Escherichia coli. Molecular and Cellular Biology 5: 1015–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lacal, J.C., Santos, E., Notario, V., Barbacid, M., Yamazaki, S., Kung, H., Seamans, C., McAndrew, S. and Growl, R. 1984. Expression of normal and transforming H-ras genes in Escherichia coli and purification of their encoded p21 proteins. Proc. Natl. Acad. Sci. USA 81: 5305–5309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Derom, C., Gheysen, D. and Fiers, W. 1982. High level synthesis in Escherichia coli of the SV-40 small t antigen under control of the bacteriophage λpL promoter. Gene 17: 45–54.

    Article  CAS  PubMed  Google Scholar 

  36. Bastia, D., Germino, J., Mukherjee, S. and Vanaman, T. 1986. New approaches to the expression and isolation of a regulatory protein. Genetic Eng. 8: 333–351.

    Article  CAS  Google Scholar 

  37. Rand, K.N., Singh, M., Thogersen, H.C. and Gait, M.J. 1986. T4 RNA ligase: New structural studies on an unusual but useful enzyme. Proc. Int. Symp. Biomol. Structural Interactions, Supp. J. Biosci. 8: 89–100.

    Google Scholar 

  38. Ibanez, C., Garcia, J.A., Carrascosa, J.L. and Salas, M. 1984. Overproduction and purification of the connector protein of Bacillus subtilus phage ϕ29. Nucleic Acids Res. 12: 23–66

    Article  Google Scholar 

  39. Ayala, J.A., Pla, J., Desviat, L.R. and De Pedro, M.A. 1988. A lacZ-pbpB gene fusion coding for an inducible hybrid protein that recognizes localized sites in the inner membrane of Escherichia coli. J. Bacteriol. 170: 3333–3341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reed, R.R. 1981. Transposon-mediated site-specific recombination: a defined in vitro system. Cell 25: 713–719.

    Article  CAS  PubMed  Google Scholar 

  41. Schulz, M., Buell, G., Schmid, E., Movva, R. and Selzer, G. 1987. Increased expression in Escherichia coli of a synthetic gene incoding human somatomedin C after gene duplication and fusion. J. Bacteriol. 169: 5385–5392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maina, C.V., Riggs, P.D., Grandea, A.G., Slatko, B.E., Moran, L.S., Tagliamonte, J.A., McReynolds, L.A. and di Guan, C. 1988. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 74: 365–373.

    Article  CAS  PubMed  Google Scholar 

  43. Squires, C.H., Childs, J., Eisenberg, S.P., Polverini, P.J. and Sommer, A. 1988. Production and characterization of human basic fibro-blast growth factor from Escherichia coli. J. Biol. Chem. 263: 16297–16302.

    CAS  PubMed  Google Scholar 

  44. Piatek, M., Laird, W., Bjorn, M.J., Wang, A. and Williams, M. 1988. Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature sensitive. J. Biol. Chem. 263: 4837–4843.

    Google Scholar 

  45. Bishai, W.R., Rappuoli, R. and Murphy, J.R. 1987. High-level expression of a proteolytically sensitive diphtheria toxin fragment in Escherichia coli. J. Bacteriol. 169: 5140–5151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McCamen, M.T. 1989. Fragments of prochymosin produced in Escherichia coli form insoluble inclusion bodies. J. Bact. 171: 1225–1227.

    Article  Google Scholar 

  47. Haase-Pettingell, C.A. and King, J. 1988. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J. Biol. Chem. 263: 4977–4983.

    CAS  PubMed  Google Scholar 

  48. Goeddel, D.V., Kleid, D.G., Bolivar, F., Heyneker, H.L., Yansura, D.G., Ross, M.J., Miozzari, G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K. and Riggs, A.D. 1979. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. U.S.A. 76: 106–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dykes, C.W., Brookless, A.B., Coomber, B.A., Noble, S.A., Humber, D.C. and Hobden, A.N. 1988. Expression of atrial natriuretic factor as a cleavable fusion protein with chloramphenical acetyltransferase in Escherichia coli. Eur. J. Biochem. 174: 398–410.

    Article  Google Scholar 

  50. Weir, M.P. and Sparks, J. 1987. Purification and renaturation of recombinant human interleukin-2. Biochem. J. 245: 85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Itakura, K., Hirose, T., Crea, R., Riggs, A.D., Heyneker, H.L., Bolivar, F. and Boyer, H.W. 1977. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198: 1056–1063.

    Article  CAS  PubMed  Google Scholar 

  52. Shine, J., Fettes, I., Lan, N.C.Y., Roberts, J.L. and Baxter, J.D. 1980. Expression of cloned β-endorphin sequences by Escherichia coli. Nature 285: 456–461.

    Article  CAS  PubMed  Google Scholar 

  53. Adari, H.Y., Rose, K., Williams, K.R., Konisberg, W.H., Lin, T.-C. and Spicer, E.K. 1985. Cloning, nucleotide sequence, and overexpression of the bacteriophage T4 regA gene. Proc. Natl. Acad. Sci. USA 82: 1901–1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sekine, S., Mizukami, T., Nishi, T., Kuwana, Y., Saito, A., Sato, M., Itoh, S. and Kawauchi, H. 1985. Cloning and expression of cDNA for the salmon growth hormone in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 82: 4306–4310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seeburg, P.H., Shine, J., Martial, J.A., Ivarie, R.D., Morris, J.E., Ultrich, A., Baxter, J.D. and Goodman, H. M. 1978. Cloning and expression of cDNA for bovine growth hormone in Escherichia coli. Nature 276: 795–798.

    Article  CAS  PubMed  Google Scholar 

  56. Szoka, P.R., Schreiber, A.B., Chan, H. and Murthy, J. 1986. A general method for retrieving the components of a genetically engineered fusion protein. DNA 5: 11–20.

    Article  CAS  PubMed  Google Scholar 

  57. White, J.H. and Richardson, C.C. 1988. Gene 19 of bacteriophage T7. Overexpression, purification, and characterization of its product. J. Biol. Chem. 263: 2469–2476.

    CAS  PubMed  Google Scholar 

  58. Wetzel, R., Heyneker, H.L., Goeddel, D.V., Juhrani, P., Shapiro, J., Crea, R., Low, T.L., McClure, K., Thurman, J.E. and Goldstein, A.L. 1981. Production of biologically active Nα-desacetyl thymosin α in Escherichia coli through expression of a chemically synthesized gene, p. 251–266. In: Cellular Responses to Molecular Modulators. Mozes, L. W., Schultz, J., Scott, W. A., and Werner, R., (Eds.). Academic Press, New York.

    Chapter  Google Scholar 

  59. Courtney, M., Buchwalder, A., Kohli, V., Lathe, R., Tolstoshev, P. and Lecocq, J.-P. 1984. High-level production of biologically active human α1-antitrypsin in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 81: 669–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pennica, D., Hayflick, J.S., Bringman, T.S., Palladina, M.A. and Goeddel, D.V. 1985. Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc. Natl. Acad. Sci. U.S.A. 82: 6060–6064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, D., Harrison, R. Predicting the Solubility of Recombinant Proteins in Escherichia coli. Nat Biotechnol 9, 443–448 (1991). https://doi.org/10.1038/nbt0591-443

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0591-443

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing