Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Plasmid–Transformed ura3 fur1 Double-Mutants of S. cerevisiae: An Autoselection System Applicable to the Production of Foreign Proteins

Abstract

Simple auxotrophic mutants of S. cerevisiae transformed to prototrophy via plasmid DNA must be grown in media in which cured cells are counter–selected. This restricts the choice of the medium to those whose composition is compatible with the selection. These media are generally not comparable with the cheap, complex media used by industry for the production of yeast cells. We report a new selection system that enables the growth of plasmid–transformed yeast cells for the production of foreign proteins in complex media. The recipient strains are double–mutants (ura3 fur1) whose viability is strictly linked to the presence of a plasmid encoding a functional orotidine–5′–phosphate decarboxylase (OMP decase). We show that these strains can produce high levels of a plasmid–encoded foreign protein (namely human α1–antitrypsin) in various complex media, including those used by industry, for many generations without any detectable loss of the plasmid–linked phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Valenzuela, P., Medina, A., Rutter, W.J., Ammerer, G., and Hall, B.D. 1982. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298:347–350.

    Article  CAS  PubMed  Google Scholar 

  2. Miyanohara, A., Toh-E, A., Nozaki, C., Hamada, F., Ohtomo, N., and Matsubara, K. 1983. Expression of hepatitis B surface antigen gene in yeast. Proc. Natl. Acad. Sci, USA 80:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hitzeman, R.A., Chen, C.Y., Hagie, F.E., Patzer, E.J., Liu, C.-C., Estell, D.A., Miller, J.V., Yaffe, A., Kleid, D.G., Levinson, A.D., and Oppermann, H. 1983. Expression of Hepatitis B virus surface antigen in yeast. Nucleic Acids Res. 11:2745–2763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McAleer, W.J., Buynak, E.B., Maigetter, R.Z., Wampler, D.E., Miller, W.J., and Hilleman, M.R. 1984. Human Hepatitis B vaccine from recombinant yeast. Nature 307:178–180.

    Article  CAS  PubMed  Google Scholar 

  5. Tuite, M.F., Dobson, M.J., Roberts, N.A., King, R.M., Burke, D.C., Kingsman, S.M., and Kingsman, A.J. 1982. Regulated high efficiency expression of human interferon-alpha in Saccharomyces cerevisiae. EMBO Journal 1:603–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mellor, J., Dobson, M.J., Roberts, N.A., Tuite, M.F., Emtage, J.S., White, S., Lowe, P.A., Patel, T., Kingsman, A.J., and Kingsman, S.M. 1983. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14.

    Article  CAS  PubMed  Google Scholar 

  7. Innis, M.A., Holland, M.J., McCake, P.C., Cole, G.E., Withman, V.P., Tal, R., Watt, W.K., Gelfand, D.H., Holland, J.P., and Meade, J.H. 1985. Expression, glycosylation and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae. Science 228:21–26.

    Article  CAS  PubMed  Google Scholar 

  8. Bitter, G.A., Chen, K.K., Banks, A.R., and Lai, P.H. 1984. Secretion of foreign proteins from Saccharomyces cerevisiae directed by α-factor gene fusions. Proc. Natl. Acad. Sci. USA 81:5330–5334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brake, A.J., Merryweather, J.P., Coit, D.G., Heberlein, U.A., Masiarz, F.R., Mullenbach, G.T., Urdea, M.S., Valenzuela, P., and Barr, P.J. 1984. α-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81:4642–4646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burrow, S.S. 1970. Baker's yeast, p. 349–420. In: The Yeast Vol. 3. Rose, H., and Harrison, J. S. (eds.) Academic Press, London, U.K.

    Google Scholar 

  11. Oura, E., Suomalainen, H., and Viskari, R. 1982. Breadmaking, p. 87–146. In: Fermented Foods. Rose, A. H. (ed.) Academic Press, London, U.K.

    Google Scholar 

  12. Gerbaud, C., Fournier, P., Blanc, H., Aigle, M., Heslot, H., and Guerineau, M. 1979. High frequency of yeast transformation by plasmids carrying part or entire 2 μ yeast plasmid. Gene 5:233–253.

    Article  CAS  PubMed  Google Scholar 

  13. Webster, T.D. and Dickson, R.C. 1983. Direct selection of S. cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin resistance gene of Tn903. Gene 26:243–252.

    Article  CAS  PubMed  Google Scholar 

  14. Bussey, H., and Meaden P. . 1985. Selection and stability of yeast transformants expressing cDNA of an M1 killer toxin immunity gene. Curr. Genet. 9:285–291.

    Article  CAS  Google Scholar 

  15. Zhu, J., Contreras, R., Gheisen, D., Ernst, J., and Fiers, N. 1985. A system for dominant transformation and plasmid amplification in Saccharomyces cerevisiae. Bio/Technology 3:451–455.

    CAS  Google Scholar 

  16. Lacroute, F. 1968. Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 95:824–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jund, R. and Lacroute, F. 1970. Genetic and physiological aspects of 5-fluoropyrimidines in Saccharomyces cerevisiae. J. Bacteriol. 102:607–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kikuchi, Y. 1983. Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell 35:484–4983.

    Article  Google Scholar 

  19. Chevallier, M.R. and Aigle, M. 1979. Qualitative detection of penicillinase produced by yeast strains carrying chimeric yeast-coli plasmids. FEBS Lett. 108:179–180.

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg, S., Barr, P.J., Najarian, R.C., and Hallewell, R.A. 1984. Synthesis in yeast of a functional oxidation-resistant mutant of human α1-antitrypsin. Nature 312:77–80.

    Article  CAS  PubMed  Google Scholar 

  21. Cabezon, T., De Wilde, M., Herion, P., Loriau, R., and Bollen, A. 1984. Expression of human α1-antitrypsin cDNA in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81:6594–6598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Courtney, M., Buchwalder, A., Tessier, L.-H., Jaye, M., Benavente, A., Balland, A., Kohli, V., Lathe, R., Tolstoshev, P., and Lecocq, J.P. 1984. High-level production of biologically active human α1-antitrypsin in Escherichia coli. Proc. Natl. Acad. Sci. USA 81:669–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rothstein, R.J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202.

    Article  CAS  PubMed  Google Scholar 

  24. Winston, F., Chumley, F., and Fink, G.R. 1983. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 101:219.

    Google Scholar 

  25. Jensen, K.F., Larsen, J.N., Schack, L., and Sivertsen, A. 1984. Studies on the structure and expression of Escherichia coli pyrC., pyrI and pyrF using the cloned genes. Eur. J. Biochem. 140:343–352.

    Article  CAS  PubMed  Google Scholar 

  26. Donovan, W.P. and Kushner, S.R. 1983. Cloning and physical analysis of the pyrF gene (coding for orotidine-5′-phosphate decarboxylase) from Escherichia coli K-12. Gene 25:39–48.

    Article  CAS  PubMed  Google Scholar 

  27. Beggs, J.D. 1981. Gene cloning in yeast, p. 175–203. In: Genetic Engineering, Vol. 2. Williamson, R. (ed.) Academic Press, London, U. K.

    Google Scholar 

  28. Broach, J.R. 1981. The yeast plasmid 2 μ circle. In: The Molecular Biology of the Yeast Saccharomyces—Life Cycle and Inheritance. Strathern, J. N., Jones, E. W., and Broach, J. R. (eds.). Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  29. Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Crosa, J.H., and Falkow, S. 1977. Construction and characterization of new cloning vehicles part 2: a multi purpose cloning system. Gene 2:95–114.

    Article  CAS  PubMed  Google Scholar 

  30. Bach, M.L., Lacroute, F., and Botstein, D. 1979. Evidence for transcriptional regulation of orotidine 5′-phosphate in yeast by hybridization of mRNA to the yeast structural gene cloned in E. coli. Proc. Natl. Acad. Sci. USA 76:386–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hitzeman, R.A., Hagie, F.E., Hayflick, J.S., Chen, C.Y., Seeburg, P.H., and Derynck, R. 1982. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucleic Acids Res. 10:7791–7808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clowes, R.C. and Hayes, W. 1968. Experiments in Microbial Genetics, p. 187. Wiley, New York.

    Google Scholar 

  33. Mortimer, R.K. and Hawthorne, D.C. 1966. Genetic Mapping in Saccharomyces cerevisiae. Genetics 53:165–173.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Clewell, D.B. 1972. Nature of ColE1 replication in E. coli in the presence of chloramphenicol. J. Bacteriol. 110:667–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Maniatis, T., Fritsh, E.F., and Sambrook, J. 1982. Molecular cloning. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  36. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen, S.N., Chiang, A.C.Y., and Hsu, L. 1972. Non-chromosomal antibiotic resistance in bacteria: genetic transformation of E. coli by R factor DNA. Proc. Natl. Acad. Sci. USA 69:2110–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analyt. Biochem. 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  39. Veira, J. and Messing, J. 1982. The pUC plasmid, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primer. Gene 19:259–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loison, G., Nguyen-Juilleret, M., Alouani, S. et al. Plasmid–Transformed ura3 fur1 Double-Mutants of S. cerevisiae: An Autoselection System Applicable to the Production of Foreign Proteins. Nat Biotechnol 4, 433–437 (1986). https://doi.org/10.1038/nbt0586-433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0586-433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing